ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inss2 Unicode version

Theorem inss2 3394
Description: The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.)
Assertion
Ref Expression
inss2  |-  ( A  i^i  B )  C_  B

Proof of Theorem inss2
StepHypRef Expression
1 incom 3365 . 2  |-  ( B  i^i  A )  =  ( A  i^i  B
)
2 inss1 3393 . 2  |-  ( B  i^i  A )  C_  B
31, 2eqsstrri 3226 1  |-  ( A  i^i  B )  C_  B
Colors of variables: wff set class
Syntax hints:    i^i cin 3165    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172  df-ss 3179
This theorem is referenced by:  difin0  3534  bnd2  4217  ordin  4432  relin2  4794  relres  4987  ssrnres  5125  cnvcnv  5135  funinsn  5323  funimaexg  5358  fnresin2  5391  ssimaex  5640  ffvresb  5743  ofrfval  6167  ofvalg  6168  ofrval  6169  off  6171  ofres  6173  ofco  6177  offres  6220  tpostpos  6350  smores3  6379  tfrlem5  6400  tfrexlem  6420  erinxp  6696  pmresg  6763  unfiin  7023  ltrelpi  7437  peano5nnnn  8005  peano5nni  9039  rexanuz  11299  bitsinv1  12273  structcnvcnv  12848  ressbasssd  12901  restsspw  13081  eltg4i  14527  ntrss2  14593  ntrin  14596  isopn3  14597  resttopon  14643  restuni2  14649  cnrest2r  14709  cnptopresti  14710  cnptoprest  14711  lmss  14718  metrest  14978  tgioo  15026  2sqlem8  15600  2sqlem9  15601  peano5set  15876
  Copyright terms: Public domain W3C validator