ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inss2 Unicode version

Theorem inss2 3402
Description: The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.)
Assertion
Ref Expression
inss2  |-  ( A  i^i  B )  C_  B

Proof of Theorem inss2
StepHypRef Expression
1 incom 3373 . 2  |-  ( B  i^i  A )  =  ( A  i^i  B
)
2 inss1 3401 . 2  |-  ( B  i^i  A )  C_  B
31, 2eqsstrri 3234 1  |-  ( A  i^i  B )  C_  B
Colors of variables: wff set class
Syntax hints:    i^i cin 3173    C_ wss 3174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-in 3180  df-ss 3187
This theorem is referenced by:  difin0  3542  bnd2  4233  ordin  4450  relin2  4812  relres  5006  ssrnres  5144  cnvcnv  5154  funinsn  5342  funimaexg  5377  fnresin2  5411  ssimaex  5663  ffvresb  5766  ofrfval  6190  ofvalg  6191  ofrval  6192  off  6194  ofres  6196  ofco  6200  offres  6243  tpostpos  6373  smores3  6402  tfrlem5  6423  tfrexlem  6443  erinxp  6719  pmresg  6786  unfiin  7049  ltrelpi  7472  peano5nnnn  8040  peano5nni  9074  rexanuz  11414  bitsinv1  12388  structcnvcnv  12963  ressbasssd  13016  restsspw  13196  eltg4i  14642  ntrss2  14708  ntrin  14711  isopn3  14712  resttopon  14758  restuni2  14764  cnrest2r  14824  cnptopresti  14825  cnptoprest  14826  lmss  14833  metrest  15093  tgioo  15141  2sqlem8  15715  2sqlem9  15716  peano5set  16075
  Copyright terms: Public domain W3C validator