ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inss2 Unicode version

Theorem inss2 3343
Description: The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.)
Assertion
Ref Expression
inss2  |-  ( A  i^i  B )  C_  B

Proof of Theorem inss2
StepHypRef Expression
1 incom 3314 . 2  |-  ( B  i^i  A )  =  ( A  i^i  B
)
2 inss1 3342 . 2  |-  ( B  i^i  A )  C_  B
31, 2eqsstrri 3175 1  |-  ( A  i^i  B )  C_  B
Colors of variables: wff set class
Syntax hints:    i^i cin 3115    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129
This theorem is referenced by:  difin0  3482  bnd2  4152  ordin  4363  relin2  4723  relres  4912  ssrnres  5046  cnvcnv  5056  funinsn  5237  funimaexg  5272  fnresin2  5303  ssimaex  5547  ffvresb  5648  ofrfval  6058  ofvalg  6059  ofrval  6060  off  6062  ofres  6064  ofco  6068  offres  6103  tpostpos  6232  smores3  6261  tfrlem5  6282  tfrexlem  6302  erinxp  6575  pmresg  6642  unfiin  6891  ltrelpi  7265  peano5nnnn  7833  peano5nni  8860  rexanuz  10930  structcnvcnv  12410  restsspw  12566  eltg4i  12695  ntrss2  12761  ntrin  12764  isopn3  12765  resttopon  12811  restuni2  12817  cnrest2r  12877  cnptopresti  12878  cnptoprest  12879  lmss  12886  metrest  13146  tgioo  13186  2sqlem8  13599  2sqlem9  13600  peano5set  13822
  Copyright terms: Public domain W3C validator