ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inss2 Unicode version

Theorem inss2 3384
Description: The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.)
Assertion
Ref Expression
inss2  |-  ( A  i^i  B )  C_  B

Proof of Theorem inss2
StepHypRef Expression
1 incom 3355 . 2  |-  ( B  i^i  A )  =  ( A  i^i  B
)
2 inss1 3383 . 2  |-  ( B  i^i  A )  C_  B
31, 2eqsstrri 3216 1  |-  ( A  i^i  B )  C_  B
Colors of variables: wff set class
Syntax hints:    i^i cin 3156    C_ wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170
This theorem is referenced by:  difin0  3524  bnd2  4206  ordin  4420  relin2  4782  relres  4974  ssrnres  5112  cnvcnv  5122  funinsn  5307  funimaexg  5342  fnresin2  5373  ssimaex  5622  ffvresb  5725  ofrfval  6144  ofvalg  6145  ofrval  6146  off  6148  ofres  6150  ofco  6154  offres  6192  tpostpos  6322  smores3  6351  tfrlem5  6372  tfrexlem  6392  erinxp  6668  pmresg  6735  unfiin  6987  ltrelpi  7391  peano5nnnn  7959  peano5nni  8993  rexanuz  11153  structcnvcnv  12694  ressbasssd  12747  restsspw  12920  eltg4i  14291  ntrss2  14357  ntrin  14360  isopn3  14361  resttopon  14407  restuni2  14413  cnrest2r  14473  cnptopresti  14474  cnptoprest  14475  lmss  14482  metrest  14742  tgioo  14790  2sqlem8  15364  2sqlem9  15365  peano5set  15586
  Copyright terms: Public domain W3C validator