ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inss2 Unicode version

Theorem inss2 3385
Description: The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.)
Assertion
Ref Expression
inss2  |-  ( A  i^i  B )  C_  B

Proof of Theorem inss2
StepHypRef Expression
1 incom 3356 . 2  |-  ( B  i^i  A )  =  ( A  i^i  B
)
2 inss1 3384 . 2  |-  ( B  i^i  A )  C_  B
31, 2eqsstrri 3217 1  |-  ( A  i^i  B )  C_  B
Colors of variables: wff set class
Syntax hints:    i^i cin 3156    C_ wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170
This theorem is referenced by:  difin0  3525  bnd2  4207  ordin  4421  relin2  4783  relres  4975  ssrnres  5113  cnvcnv  5123  funinsn  5308  funimaexg  5343  fnresin2  5376  ssimaex  5625  ffvresb  5728  ofrfval  6148  ofvalg  6149  ofrval  6150  off  6152  ofres  6154  ofco  6158  offres  6201  tpostpos  6331  smores3  6360  tfrlem5  6381  tfrexlem  6401  erinxp  6677  pmresg  6744  unfiin  6996  ltrelpi  7408  peano5nnnn  7976  peano5nni  9010  rexanuz  11170  bitsinv1  12144  structcnvcnv  12719  ressbasssd  12772  restsspw  12951  eltg4i  14375  ntrss2  14441  ntrin  14444  isopn3  14445  resttopon  14491  restuni2  14497  cnrest2r  14557  cnptopresti  14558  cnptoprest  14559  lmss  14566  metrest  14826  tgioo  14874  2sqlem8  15448  2sqlem9  15449  peano5set  15670
  Copyright terms: Public domain W3C validator