ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inss2 Unicode version

Theorem inss2 3381
Description: The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.)
Assertion
Ref Expression
inss2  |-  ( A  i^i  B )  C_  B

Proof of Theorem inss2
StepHypRef Expression
1 incom 3352 . 2  |-  ( B  i^i  A )  =  ( A  i^i  B
)
2 inss1 3380 . 2  |-  ( B  i^i  A )  C_  B
31, 2eqsstrri 3213 1  |-  ( A  i^i  B )  C_  B
Colors of variables: wff set class
Syntax hints:    i^i cin 3153    C_ wss 3154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3160  df-ss 3167
This theorem is referenced by:  difin0  3521  bnd2  4203  ordin  4417  relin2  4779  relres  4971  ssrnres  5109  cnvcnv  5119  funinsn  5304  funimaexg  5339  fnresin2  5370  ssimaex  5619  ffvresb  5722  ofrfval  6141  ofvalg  6142  ofrval  6143  off  6145  ofres  6147  ofco  6151  offres  6189  tpostpos  6319  smores3  6348  tfrlem5  6369  tfrexlem  6389  erinxp  6665  pmresg  6732  unfiin  6984  ltrelpi  7386  peano5nnnn  7954  peano5nni  8987  rexanuz  11135  structcnvcnv  12637  ressbasssd  12690  restsspw  12863  eltg4i  14234  ntrss2  14300  ntrin  14303  isopn3  14304  resttopon  14350  restuni2  14356  cnrest2r  14416  cnptopresti  14417  cnptoprest  14418  lmss  14425  metrest  14685  tgioo  14733  2sqlem8  15280  2sqlem9  15281  peano5set  15502
  Copyright terms: Public domain W3C validator