ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undif1ss Unicode version

Theorem undif1ss 3566
Description: Absorption of difference by union. In classical logic, as Theorem 35 of [Suppes] p. 29, this would be equality rather than subset. (Contributed by Jim Kingdon, 4-Aug-2018.)
Assertion
Ref Expression
undif1ss  |-  ( ( A  \  B )  u.  B )  C_  ( A  u.  B
)

Proof of Theorem undif1ss
StepHypRef Expression
1 difss 3330 . 2  |-  ( A 
\  B )  C_  A
2 unss1 3373 . 2  |-  ( ( A  \  B ) 
C_  A  ->  (
( A  \  B
)  u.  B ) 
C_  ( A  u.  B ) )
31, 2ax-mp 5 1  |-  ( ( A  \  B )  u.  B )  C_  ( A  u.  B
)
Colors of variables: wff set class
Syntax hints:    \ cdif 3194    u. cun 3195    C_ wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210
This theorem is referenced by:  undif2ss  3567  pwundifss  4376
  Copyright terms: Public domain W3C validator