ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undif1ss Unicode version

Theorem undif1ss 3525
Description: Absorption of difference by union. In classical logic, as Theorem 35 of [Suppes] p. 29, this would be equality rather than subset. (Contributed by Jim Kingdon, 4-Aug-2018.)
Assertion
Ref Expression
undif1ss  |-  ( ( A  \  B )  u.  B )  C_  ( A  u.  B
)

Proof of Theorem undif1ss
StepHypRef Expression
1 difss 3289 . 2  |-  ( A 
\  B )  C_  A
2 unss1 3332 . 2  |-  ( ( A  \  B ) 
C_  A  ->  (
( A  \  B
)  u.  B ) 
C_  ( A  u.  B ) )
31, 2ax-mp 5 1  |-  ( ( A  \  B )  u.  B )  C_  ( A  u.  B
)
Colors of variables: wff set class
Syntax hints:    \ cdif 3154    u. cun 3155    C_ wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170
This theorem is referenced by:  undif2ss  3526  pwundifss  4320
  Copyright terms: Public domain W3C validator