ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undif1ss Unicode version

Theorem undif1ss 3535
Description: Absorption of difference by union. In classical logic, as Theorem 35 of [Suppes] p. 29, this would be equality rather than subset. (Contributed by Jim Kingdon, 4-Aug-2018.)
Assertion
Ref Expression
undif1ss  |-  ( ( A  \  B )  u.  B )  C_  ( A  u.  B
)

Proof of Theorem undif1ss
StepHypRef Expression
1 difss 3299 . 2  |-  ( A 
\  B )  C_  A
2 unss1 3342 . 2  |-  ( ( A  \  B ) 
C_  A  ->  (
( A  \  B
)  u.  B ) 
C_  ( A  u.  B ) )
31, 2ax-mp 5 1  |-  ( ( A  \  B )  u.  B )  C_  ( A  u.  B
)
Colors of variables: wff set class
Syntax hints:    \ cdif 3163    u. cun 3164    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179
This theorem is referenced by:  undif2ss  3536  pwundifss  4332
  Copyright terms: Public domain W3C validator