HomeHome Intuitionistic Logic Explorer
Theorem List (p. 35 of 129)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 3401-3500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremr19.9rmv 3401* Restricted quantification of wff not containing quantified variable. (Contributed by Jim Kingdon, 5-Aug-2018.)
 |-  ( E. y  y  e.  A  ->  ( ph 
 <-> 
 E. x  e.  A  ph ) )
 
Theoremr19.28mv 3402* Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 6-Aug-2018.)
 |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  ( ph  /\  ps )  <->  (
 ph  /\  A. x  e.  A  ps ) ) )
 
Theoremr19.45mv 3403* Restricted version of Theorem 19.45 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.)
 |-  ( E. x  x  e.  A  ->  ( E. x  e.  A  ( ph  \/  ps )  <->  (
 ph  \/  E. x  e.  A  ps ) ) )
 
Theoremr19.44mv 3404* Restricted version of Theorem 19.44 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.)
 |-  ( E. y  y  e.  A  ->  ( E. x  e.  A  ( ph  \/  ps )  <->  ( E. x  e.  A  ph 
 \/  ps ) ) )
 
Theoremr19.27m 3405* Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.)
 |- 
 F/ x ps   =>    |-  ( E. x  x  e.  A  ->  (
 A. x  e.  A  ( ph  /\  ps )  <->  (
 A. x  e.  A  ph 
 /\  ps ) ) )
 
Theoremr19.27mv 3406* Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.)
 |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  ( ph  /\  ps )  <->  (
 A. x  e.  A  ph 
 /\  ps ) ) )
 
Theoremrzal 3407* Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( A  =  (/)  ->  A. x  e.  A  ph )
 
Theoremrexn0 3408* Restricted existential quantification implies its restriction is nonempty (it is also inhabited as shown in rexm 3409). (Contributed by Szymon Jaroszewicz, 3-Apr-2007.)
 |-  ( E. x  e.  A  ph  ->  A  =/=  (/) )
 
Theoremrexm 3409* Restricted existential quantification implies its restriction is inhabited. (Contributed by Jim Kingdon, 16-Oct-2018.)
 |-  ( E. x  e.  A  ph  ->  E. x  x  e.  A )
 
Theoremralidm 3410* Idempotent law for restricted quantifier. (Contributed by NM, 28-Mar-1997.)
 |-  ( A. x  e.  A  A. x  e.  A  ph  <->  A. x  e.  A  ph )
 
Theoremral0 3411 Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.)
 |- 
 A. x  e.  (/)  ph
 
Theoremrgenm 3412* Generalization rule that eliminates an inhabited class requirement. (Contributed by Jim Kingdon, 5-Aug-2018.)
 |-  ( ( E. x  x  e.  A  /\  x  e.  A )  -> 
 ph )   =>    |- 
 A. x  e.  A  ph
 
Theoremralf0 3413* The quantification of a falsehood is vacuous when true. (Contributed by NM, 26-Nov-2005.)
 |- 
 -.  ph   =>    |-  ( A. x  e.  A  ph  <->  A  =  (/) )
 
Theoremralm 3414 Inhabited classes and restricted quantification. (Contributed by Jim Kingdon, 6-Aug-2018.)
 |-  ( ( E. x  x  e.  A  ->  A. x  e.  A  ph ) 
 <-> 
 A. x  e.  A  ph )
 
Theoremraaanlem 3415* Special case of raaan 3416 where  A is inhabited. (Contributed by Jim Kingdon, 6-Aug-2018.)
 |- 
 F/ y ph   &    |-  F/ x ps   =>    |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  A. y  e.  A  ( ph  /\  ps ) 
 <->  ( A. x  e.  A  ph  /\  A. y  e.  A  ps ) ) )
 
Theoremraaan 3416* Rearrange restricted quantifiers. (Contributed by NM, 26-Oct-2010.)
 |- 
 F/ y ph   &    |-  F/ x ps   =>    |-  ( A. x  e.  A  A. y  e.  A  (
 ph  /\  ps )  <->  (
 A. x  e.  A  ph 
 /\  A. y  e.  A  ps ) )
 
Theoremraaanv 3417* Rearrange restricted quantifiers. (Contributed by NM, 11-Mar-1997.)
 |-  ( A. x  e.  A  A. y  e.  A  ( ph  /\  ps ) 
 <->  ( A. x  e.  A  ph  /\  A. y  e.  A  ps ) )
 
Theoremsbss 3418* Set substitution into the first argument of a subset relation. (Contributed by Rodolfo Medina, 7-Jul-2010.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
 |-  ( [ y  /  x ] x  C_  A  <->  y 
 C_  A )
 
Theoremsbcssg 3419 Distribute proper substitution through a subclass relation. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Alexander van der Vekens, 23-Jul-2017.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. B  C_  C  <->  [_ A  /  x ]_ B  C_  [_ A  /  x ]_ C ) )
 
Theoremdcun 3420 The union of two decidable classes is decidable. (Contributed by Jim Kingdon, 5-Oct-2022.)
 |-  ( ph  -> DECID  k  e.  A )   &    |-  ( ph  -> DECID  k  e.  B )   =>    |-  ( ph  -> DECID  k  e.  ( A  u.  B ) )
 
2.1.15  Conditional operator
 
Syntaxcif 3421 Extend class notation to include the conditional operator. See df-if 3422 for a description. (In older databases this was denoted "ded".)
 class  if ( ph ,  A ,  B )
 
Definitiondf-if 3422* Define the conditional operator. Read  if ( ph ,  A ,  B ) as "if  ph then  A else  B." See iftrue 3426 and iffalse 3429 for its values. In mathematical literature, this operator is rarely defined formally but is implicit in informal definitions such as "let f(x)=0 if x=0 and 1/x otherwise."

In the absence of excluded middle, this will tend to be useful where  ph is decidable (in the sense of df-dc 787). (Contributed by NM, 15-May-1999.)

 |- 
 if ( ph ,  A ,  B )  =  { x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) }
 
Theoremdfif6 3423* An alternate definition of the conditional operator df-if 3422 as a simple class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.)
 |- 
 if ( ph ,  A ,  B )  =  ( { x  e.  A  |  ph }  u.  { x  e.  B  |  -.  ph } )
 
Theoremifeq1 3424 Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |-  ( A  =  B  ->  if ( ph ,  A ,  C )  =  if ( ph ,  B ,  C )
 )
 
Theoremifeq2 3425 Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |-  ( A  =  B  ->  if ( ph ,  C ,  A )  =  if ( ph ,  C ,  B )
 )
 
Theoremiftrue 3426 Value of the conditional operator when its first argument is true. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ph  ->  if ( ph ,  A ,  B )  =  A )
 
Theoremiftruei 3427 Inference associated with iftrue 3426. (Contributed by BJ, 7-Oct-2018.)
 |-  ph   =>    |- 
 if ( ph ,  A ,  B )  =  A
 
Theoremiftrued 3428 Value of the conditional operator when its first argument is true. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  ch )   =>    |-  ( ph  ->  if ( ch ,  A ,  B )  =  A )
 
Theoremiffalse 3429 Value of the conditional operator when its first argument is false. (Contributed by NM, 14-Aug-1999.)
 |-  ( -.  ph  ->  if ( ph ,  A ,  B )  =  B )
 
Theoremiffalsei 3430 Inference associated with iffalse 3429. (Contributed by BJ, 7-Oct-2018.)
 |- 
 -.  ph   =>    |- 
 if ( ph ,  A ,  B )  =  B
 
Theoremiffalsed 3431 Value of the conditional operator when its first argument is false. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  -.  ch )   =>    |-  ( ph  ->  if ( ch ,  A ,  B )  =  B )
 
Theoremifnefalse 3432 When values are unequal, but an "if" condition checks if they are equal, then the "false" branch results. This is a simple utility to provide a slight shortening and simplification of proofs versus applying iffalse 3429 directly in this case. (Contributed by David A. Wheeler, 15-May-2015.)
 |-  ( A  =/=  B  ->  if ( A  =  B ,  C ,  D )  =  D )
 
Theoremifsbdc 3433 Distribute a function over an if-clause. (Contributed by Jim Kingdon, 1-Jan-2022.)
 |-  ( if ( ph ,  A ,  B )  =  A  ->  C  =  D )   &    |-  ( if ( ph ,  A ,  B )  =  B  ->  C  =  E )   =>    |-  (DECID 
 ph  ->  C  =  if ( ph ,  D ,  E ) )
 
Theoremdfif3 3434* Alternate definition of the conditional operator df-if 3422. Note that  ph is independent of  x i.e. a constant true or false. (Contributed by NM, 25-Aug-2013.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |-  C  =  { x  |  ph }   =>    |- 
 if ( ph ,  A ,  B )  =  ( ( A  i^i  C )  u.  ( B  i^i  ( _V  \  C ) ) )
 
Theoremifeq12 3435 Equality theorem for conditional operators. (Contributed by NM, 1-Sep-2004.)
 |-  ( ( A  =  B  /\  C  =  D )  ->  if ( ph ,  A ,  C )  =  if ( ph ,  B ,  D ) )
 
Theoremifeq1d 3436 Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  if ( ps ,  A ,  C )  =  if ( ps ,  B ,  C ) )
 
Theoremifeq2d 3437 Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  if ( ps ,  C ,  A )  =  if ( ps ,  C ,  B ) )
 
Theoremifeq12d 3438 Equality deduction for conditional operator. (Contributed by NM, 24-Mar-2015.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  if ( ps ,  A ,  C )  =  if ( ps ,  B ,  D ) )
 
Theoremifbi 3439 Equivalence theorem for conditional operators. (Contributed by Raph Levien, 15-Jan-2004.)
 |-  ( ( ph  <->  ps )  ->  if ( ph ,  A ,  B )  =  if ( ps ,  A ,  B ) )
 
Theoremifbid 3440 Equivalence deduction for conditional operators. (Contributed by NM, 18-Apr-2005.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  if ( ps ,  A ,  B )  =  if ( ch ,  A ,  B ) )
 
Theoremifbieq1d 3441 Equivalence/equality deduction for conditional operators. (Contributed by JJ, 25-Sep-2018.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  if ( ps ,  A ,  C )  =  if ( ch ,  B ,  C ) )
 
Theoremifbieq2i 3442 Equivalence/equality inference for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ph  <->  ps )   &    |-  A  =  B   =>    |-  if ( ph ,  C ,  A )  =  if ( ps ,  C ,  B )
 
Theoremifbieq2d 3443 Equivalence/equality deduction for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  if ( ps ,  C ,  A )  =  if ( ch ,  C ,  B ) )
 
Theoremifbieq12i 3444 Equivalence deduction for conditional operators. (Contributed by NM, 18-Mar-2013.)
 |-  ( ph  <->  ps )   &    |-  A  =  C   &    |-  B  =  D   =>    |- 
 if ( ph ,  A ,  B )  =  if ( ps ,  C ,  D )
 
Theoremifbieq12d 3445 Equivalence deduction for conditional operators. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  A  =  C )   &    |-  ( ph  ->  B  =  D )   =>    |-  ( ph  ->  if ( ps ,  A ,  B )  =  if ( ch ,  C ,  D ) )
 
Theoremnfifd 3446 Deduction version of nfif 3447. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 13-Oct-2016.)
 |-  ( ph  ->  F/ x ps )   &    |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/_ x B )   =>    |-  ( ph  ->  F/_ x if ( ps ,  A ,  B ) )
 
Theoremnfif 3447 Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |- 
 F/ x ph   &    |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x if ( ph ,  A ,  B )
 
Theoremifcldadc 3448 Conditional closure. (Contributed by Jim Kingdon, 11-Jan-2022.)
 |-  ( ( ph  /\  ps )  ->  A  e.  C )   &    |-  ( ( ph  /\  -.  ps )  ->  B  e.  C )   &    |-  ( ph  -> DECID  ps )   =>    |-  ( ph  ->  if ( ps ,  A ,  B )  e.  C )
 
Theoremifeq1dadc 3449 Conditional equality. (Contributed by Jim Kingdon, 1-Jan-2022.)
 |-  ( ( ph  /\  ps )  ->  A  =  B )   &    |-  ( ph  -> DECID  ps )   =>    |-  ( ph  ->  if ( ps ,  A ,  C )  =  if ( ps ,  B ,  C ) )
 
Theoremifbothdadc 3450 A formula  th containing a decidable conditional operator is true when both of its cases are true. (Contributed by Jim Kingdon, 3-Jun-2022.)
 |-  ( A  =  if ( ph ,  A ,  B )  ->  ( ps  <->  th ) )   &    |-  ( B  =  if ( ph ,  A ,  B )  ->  ( ch 
 <-> 
 th ) )   &    |-  (
 ( et  /\  ph )  ->  ps )   &    |-  ( ( et 
 /\  -.  ph )  ->  ch )   &    |-  ( et  -> DECID  ph )   =>    |-  ( et  ->  th )
 
Theoremifbothdc 3451 A wff  th containing a conditional operator is true when both of its cases are true. (Contributed by Jim Kingdon, 8-Aug-2021.)
 |-  ( A  =  if ( ph ,  A ,  B )  ->  ( ps  <->  th ) )   &    |-  ( B  =  if ( ph ,  A ,  B )  ->  ( ch 
 <-> 
 th ) )   =>    |-  ( ( ps 
 /\  ch  /\ DECID  ph )  ->  th )
 
Theoremifiddc 3452 Identical true and false arguments in the conditional operator. (Contributed by NM, 18-Apr-2005.)
 |-  (DECID 
 ph  ->  if ( ph ,  A ,  A )  =  A )
 
Theoremeqifdc 3453 Expansion of an equality with a conditional operator. (Contributed by Jim Kingdon, 28-Jul-2022.)
 |-  (DECID 
 ph  ->  ( A  =  if ( ph ,  B ,  C )  <->  ( ( ph  /\  A  =  B )  \/  ( -.  ph  /\  A  =  C ) ) ) )
 
Theoremifcldcd 3454 Membership (closure) of a conditional operator, deduction form. (Contributed by Jim Kingdon, 8-Aug-2021.)
 |-  ( ph  ->  A  e.  C )   &    |-  ( ph  ->  B  e.  C )   &    |-  ( ph  -> DECID  ps )   =>    |-  ( ph  ->  if ( ps ,  A ,  B )  e.  C )
 
Theoremifandc 3455 Rewrite a conjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014.)
 |-  (DECID 
 ph  ->  if ( (
 ph  /\  ps ) ,  A ,  B )  =  if ( ph ,  if ( ps ,  A ,  B ) ,  B ) )
 
Theoremifmdc 3456 If a conditional class is inhabited, then the condition is decidable. This shows that conditionals are not very useful unless one can prove the condition decidable. (Contributed by BJ, 24-Sep-2022.)
 |-  ( A  e.  if ( ph ,  B ,  C )  -> DECID  ph )
 
2.1.16  Power classes
 
Syntaxcpw 3457 Extend class notation to include power class. (The tilde in the Metamath token is meant to suggest the calligraphic font of the P.)
 class  ~P A
 
Theorempwjust 3458* Soundness justification theorem for df-pw 3459. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |- 
 { x  |  x  C_  A }  =  {
 y  |  y  C_  A }
 
Definitiondf-pw 3459* Define power class. Definition 5.10 of [TakeutiZaring] p. 17, but we also let it apply to proper classes, i.e. those that are not members of  _V. When applied to a set, this produces its power set. A power set of S is the set of all subsets of S, including the empty set and S itself. For example, if  A is { 3 , 5 , 7 }, then 
~P A is { (/) , { 3 } , { 5 } , { 7 } , { 3 , 5 } , { 3 , 7 } , { 5 , 7 } , { 3 , 5 , 7 } }. We will later introduce the Axiom of Power Sets. Still later we will prove that the size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by NM, 5-Aug-1993.)
 |- 
 ~P A  =  { x  |  x  C_  A }
 
Theorempweq 3460 Equality theorem for power class. (Contributed by NM, 5-Aug-1993.)
 |-  ( A  =  B  ->  ~P A  =  ~P B )
 
Theorempweqi 3461 Equality inference for power class. (Contributed by NM, 27-Nov-2013.)
 |-  A  =  B   =>    |-  ~P A  =  ~P B
 
Theorempweqd 3462 Equality deduction for power class. (Contributed by NM, 27-Nov-2013.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ~P A  =  ~P B )
 
Theoremelpw 3463 Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 31-Dec-1993.)
 |-  A  e.  _V   =>    |-  ( A  e.  ~P B  <->  A  C_  B )
 
Theoremselpw 3464* Setvar variable membership in a power class (common case). See elpw 3463. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  ( x  e.  ~P A 
 <->  x  C_  A )
 
Theoremelpwg 3465 Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 6-Aug-2000.)
 |-  ( A  e.  V  ->  ( A  e.  ~P B 
 <->  A  C_  B )
 )
 
Theoremelpwi 3466 Subset relation implied by membership in a power class. (Contributed by NM, 17-Feb-2007.)
 |-  ( A  e.  ~P B  ->  A  C_  B )
 
Theoremelpwb 3467 Characterization of the elements of a power class. (Contributed by BJ, 29-Apr-2021.)
 |-  ( A  e.  ~P B 
 <->  ( A  e.  _V  /\  A  C_  B )
 )
 
Theoremelpwid 3468 An element of a power class is a subclass. Deduction form of elpwi 3466. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  e.  ~P B )   =>    |-  ( ph  ->  A 
 C_  B )
 
Theoremelelpwi 3469 If  A belongs to a part of  C then  A belongs to  C. (Contributed by FL, 3-Aug-2009.)
 |-  ( ( A  e.  B  /\  B  e.  ~P C )  ->  A  e.  C )
 
Theoremnfpw 3470 Bound-variable hypothesis builder for power class. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
 |-  F/_ x A   =>    |-  F/_ x ~P A
 
Theorempwidg 3471 Membership of the original in a power set. (Contributed by Stefan O'Rear, 1-Feb-2015.)
 |-  ( A  e.  V  ->  A  e.  ~P A )
 
Theorempwid 3472 A set is a member of its power class. Theorem 87 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.)
 |-  A  e.  _V   =>    |-  A  e.  ~P A
 
Theorempwss 3473* Subclass relationship for power class. (Contributed by NM, 21-Jun-2009.)
 |-  ( ~P A  C_  B 
 <-> 
 A. x ( x 
 C_  A  ->  x  e.  B ) )
 
2.1.17  Unordered and ordered pairs
 
Syntaxcsn 3474 Extend class notation to include singleton.
 class  { A }
 
Syntaxcpr 3475 Extend class notation to include unordered pair.
 class  { A ,  B }
 
Syntaxctp 3476 Extend class notation to include unordered triplet.
 class  { A ,  B ,  C }
 
Syntaxcop 3477 Extend class notation to include ordered pair.
 class  <. A ,  B >.
 
Syntaxcotp 3478 Extend class notation to include ordered triple.
 class  <. A ,  B ,  C >.
 
Theoremsnjust 3479* Soundness justification theorem for df-sn 3480. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |- 
 { x  |  x  =  A }  =  {
 y  |  y  =  A }
 
Definitiondf-sn 3480* Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of  _V, although it is not very meaningful in this case. For an alternate definition see dfsn2 3488. (Contributed by NM, 5-Aug-1993.)
 |- 
 { A }  =  { x  |  x  =  A }
 
Definitiondf-pr 3481 Define unordered pair of classes. Definition 7.1 of [Quine] p. 48. They are unordered, so  { A ,  B }  =  { B ,  A } as proven by prcom 3546. For a more traditional definition, but requiring a dummy variable, see dfpr2 3493. (Contributed by NM, 5-Aug-1993.)
 |- 
 { A ,  B }  =  ( { A }  u.  { B } )
 
Definitiondf-tp 3482 Define unordered triple of classes. Definition of [Enderton] p. 19. (Contributed by NM, 9-Apr-1994.)
 |- 
 { A ,  B ,  C }  =  ( { A ,  B }  u.  { C }
 )
 
Definitiondf-op 3483* Definition of an ordered pair, equivalent to Kuratowski's definition  { { A } ,  { A ,  B } } when the arguments are sets. Since the behavior of Kuratowski definition is not very useful for proper classes, we define it to be empty in this case (see opprc1 3674 and opprc2 3675). For Kuratowski's actual definition when the arguments are sets, see dfop 3651.

Definition 9.1 of [Quine] p. 58 defines an ordered pair unconditionally as  <. A ,  B >.  =  { { A } ,  { A ,  B } }, which has different behavior from our df-op 3483 when the arguments are proper classes. Ordinarily this difference is not important, since neither definition is meaningful in that case. Our df-op 3483 was chosen because it often makes proofs shorter by eliminating unnecessary sethood hypotheses.

There are other ways to define ordered pairs. The basic requirement is that two ordered pairs are equal iff their respective members are equal. In 1914 Norbert Wiener gave the first successful definition  <. A ,  B >._2  =  { { { A } ,  (/) } ,  { { B } } }. This was simplified by Kazimierz Kuratowski in 1921 to our present definition. An even simpler definition is  <. A ,  B >._3  =  { A ,  { A ,  B } }, but it requires the Axiom of Regularity for its justification and is not commonly used. Finally, an ordered pair of real numbers can be represented by a complex number. (Contributed by NM, 28-May-1995.) (Revised by Mario Carneiro, 26-Apr-2015.)

 |- 
 <. A ,  B >.  =  { x  |  ( A  e.  _V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) }
 
Definitiondf-ot 3484 Define ordered triple of classes. Definition of ordered triple in [Stoll] p. 25. (Contributed by NM, 3-Apr-2015.)
 |- 
 <. A ,  B ,  C >.  =  <. <. A ,  B >. ,  C >.
 
Theoremsneq 3485 Equality theorem for singletons. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.)
 |-  ( A  =  B  ->  { A }  =  { B } )
 
Theoremsneqi 3486 Equality inference for singletons. (Contributed by NM, 22-Jan-2004.)
 |-  A  =  B   =>    |-  { A }  =  { B }
 
Theoremsneqd 3487 Equality deduction for singletons. (Contributed by NM, 22-Jan-2004.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  { A }  =  { B } )
 
Theoremdfsn2 3488 Alternate definition of singleton. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.)
 |- 
 { A }  =  { A ,  A }
 
Theoremelsng 3489 There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15 (generalized). (Contributed by NM, 13-Sep-1995.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |-  ( A  e.  V  ->  ( A  e.  { B }  <->  A  =  B ) )
 
Theoremelsn 3490 There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.)
 |-  A  e.  _V   =>    |-  ( A  e.  { B }  <->  A  =  B )
 
Theoremvelsn 3491 There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 21-Jun-1993.)
 |-  ( x  e.  { A }  <->  x  =  A )
 
Theoremelsni 3492 There is only one element in a singleton. (Contributed by NM, 5-Jun-1994.)
 |-  ( A  e.  { B }  ->  A  =  B )
 
Theoremdfpr2 3493* Alternate definition of unordered pair. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.)
 |- 
 { A ,  B }  =  { x  |  ( x  =  A  \/  x  =  B ) }
 
Theoremelprg 3494 A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15, generalized. (Contributed by NM, 13-Sep-1995.)
 |-  ( A  e.  V  ->  ( A  e.  { B ,  C }  <->  ( A  =  B  \/  A  =  C )
 ) )
 
Theoremelpr 3495 A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.)
 |-  A  e.  _V   =>    |-  ( A  e.  { B ,  C }  <->  ( A  =  B  \/  A  =  C )
 )
 
Theoremelpr2 3496 A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 14-Oct-2005.)
 |-  B  e.  _V   &    |-  C  e.  _V   =>    |-  ( A  e.  { B ,  C }  <->  ( A  =  B  \/  A  =  C )
 )
 
Theoremelpri 3497 If a class is an element of a pair, then it is one of the two paired elements. (Contributed by Scott Fenton, 1-Apr-2011.)
 |-  ( A  e.  { B ,  C }  ->  ( A  =  B  \/  A  =  C ) )
 
Theoremnelpri 3498 If an element doesn't match the items in an unordered pair, it is not in the unordered pair. (Contributed by David A. Wheeler, 10-May-2015.)
 |-  A  =/=  B   &    |-  A  =/=  C   =>    |- 
 -.  A  e.  { B ,  C }
 
Theoremprneli 3499 If an element doesn't match the items in an unordered pair, it is not in the unordered pair, using 
e/. (Contributed by David A. Wheeler, 10-May-2015.)
 |-  A  =/=  B   &    |-  A  =/=  C   =>    |-  A  e/  { B ,  C }
 
Theoremnelprd 3500 If an element doesn't match the items in an unordered pair, it is not in the unordered pair, deduction version. (Contributed by Alexander van der Vekens, 25-Jan-2018.)
 |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  A  =/=  C )   =>    |-  ( ph  ->  -.  A  e.  { B ,  C } )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12832
  Copyright terms: Public domain < Previous  Next >