ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difjust Unicode version

Theorem difjust 3040
Description: Soundness justification theorem for df-dif 3041. (Contributed by Rodolfo Medina, 27-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
difjust  |-  { x  |  ( x  e.  A  /\  -.  x  e.  B ) }  =  { y  |  ( y  e.  A  /\  -.  y  e.  B
) }
Distinct variable groups:    x, A    x, B    y, A    y, B

Proof of Theorem difjust
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eleq1 2178 . . . 4  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  A ) )
2 eleq1 2178 . . . . 5  |-  ( x  =  z  ->  (
x  e.  B  <->  z  e.  B ) )
32notbid 639 . . . 4  |-  ( x  =  z  ->  ( -.  x  e.  B  <->  -.  z  e.  B ) )
41, 3anbi12d 462 . . 3  |-  ( x  =  z  ->  (
( x  e.  A  /\  -.  x  e.  B
)  <->  ( z  e.  A  /\  -.  z  e.  B ) ) )
54cbvabv 2239 . 2  |-  { x  |  ( x  e.  A  /\  -.  x  e.  B ) }  =  { z  |  ( z  e.  A  /\  -.  z  e.  B
) }
6 eleq1 2178 . . . 4  |-  ( z  =  y  ->  (
z  e.  A  <->  y  e.  A ) )
7 eleq1 2178 . . . . 5  |-  ( z  =  y  ->  (
z  e.  B  <->  y  e.  B ) )
87notbid 639 . . . 4  |-  ( z  =  y  ->  ( -.  z  e.  B  <->  -.  y  e.  B ) )
96, 8anbi12d 462 . . 3  |-  ( z  =  y  ->  (
( z  e.  A  /\  -.  z  e.  B
)  <->  ( y  e.  A  /\  -.  y  e.  B ) ) )
109cbvabv 2239 . 2  |-  { z  |  ( z  e.  A  /\  -.  z  e.  B ) }  =  { y  |  ( y  e.  A  /\  -.  y  e.  B
) }
115, 10eqtri 2136 1  |-  { x  |  ( x  e.  A  /\  -.  x  e.  B ) }  =  { y  |  ( y  e.  A  /\  -.  y  e.  B
) }
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    = wceq 1314    e. wcel 1463   {cab 2101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator