ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difjust GIF version

Theorem difjust 3171
Description: Soundness justification theorem for df-dif 3172. (Contributed by Rodolfo Medina, 27-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
difjust {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)} = {𝑦 ∣ (𝑦𝐴 ∧ ¬ 𝑦𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑦,𝐴   𝑦,𝐵

Proof of Theorem difjust
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2269 . . . 4 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
2 eleq1 2269 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐵𝑧𝐵))
32notbid 669 . . . 4 (𝑥 = 𝑧 → (¬ 𝑥𝐵 ↔ ¬ 𝑧𝐵))
41, 3anbi12d 473 . . 3 (𝑥 = 𝑧 → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ↔ (𝑧𝐴 ∧ ¬ 𝑧𝐵)))
54cbvabv 2331 . 2 {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)} = {𝑧 ∣ (𝑧𝐴 ∧ ¬ 𝑧𝐵)}
6 eleq1 2269 . . . 4 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
7 eleq1 2269 . . . . 5 (𝑧 = 𝑦 → (𝑧𝐵𝑦𝐵))
87notbid 669 . . . 4 (𝑧 = 𝑦 → (¬ 𝑧𝐵 ↔ ¬ 𝑦𝐵))
96, 8anbi12d 473 . . 3 (𝑧 = 𝑦 → ((𝑧𝐴 ∧ ¬ 𝑧𝐵) ↔ (𝑦𝐴 ∧ ¬ 𝑦𝐵)))
109cbvabv 2331 . 2 {𝑧 ∣ (𝑧𝐴 ∧ ¬ 𝑧𝐵)} = {𝑦 ∣ (𝑦𝐴 ∧ ¬ 𝑦𝐵)}
115, 10eqtri 2227 1 {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)} = {𝑦 ∣ (𝑦𝐴 ∧ ¬ 𝑦𝐵)}
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104   = wceq 1373  wcel 2177  {cab 2192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator