Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > difjust | GIF version |
Description: Soundness justification theorem for df-dif 3123. (Contributed by Rodolfo Medina, 27-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
difjust | ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2233 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
2 | eleq1 2233 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) | |
3 | 2 | notbid 662 | . . . 4 ⊢ (𝑥 = 𝑧 → (¬ 𝑥 ∈ 𝐵 ↔ ¬ 𝑧 ∈ 𝐵)) |
4 | 1, 3 | anbi12d 470 | . . 3 ⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ↔ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝐵))) |
5 | 4 | cbvabv 2295 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)} = {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝐵)} |
6 | eleq1 2233 | . . . 4 ⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
7 | eleq1 2233 | . . . . 5 ⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
8 | 7 | notbid 662 | . . . 4 ⊢ (𝑧 = 𝑦 → (¬ 𝑧 ∈ 𝐵 ↔ ¬ 𝑦 ∈ 𝐵)) |
9 | 6, 8 | anbi12d 470 | . . 3 ⊢ (𝑧 = 𝑦 → ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵))) |
10 | 9 | cbvabv 2295 | . 2 ⊢ {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝐵)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵)} |
11 | 5, 10 | eqtri 2191 | 1 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵)} |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 = wceq 1348 ∈ wcel 2141 {cab 2156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |