ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difjust GIF version

Theorem difjust 3122
Description: Soundness justification theorem for df-dif 3123. (Contributed by Rodolfo Medina, 27-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
difjust {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)} = {𝑦 ∣ (𝑦𝐴 ∧ ¬ 𝑦𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑦,𝐴   𝑦,𝐵

Proof of Theorem difjust
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2233 . . . 4 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
2 eleq1 2233 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐵𝑧𝐵))
32notbid 662 . . . 4 (𝑥 = 𝑧 → (¬ 𝑥𝐵 ↔ ¬ 𝑧𝐵))
41, 3anbi12d 470 . . 3 (𝑥 = 𝑧 → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ↔ (𝑧𝐴 ∧ ¬ 𝑧𝐵)))
54cbvabv 2295 . 2 {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)} = {𝑧 ∣ (𝑧𝐴 ∧ ¬ 𝑧𝐵)}
6 eleq1 2233 . . . 4 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
7 eleq1 2233 . . . . 5 (𝑧 = 𝑦 → (𝑧𝐵𝑦𝐵))
87notbid 662 . . . 4 (𝑧 = 𝑦 → (¬ 𝑧𝐵 ↔ ¬ 𝑦𝐵))
96, 8anbi12d 470 . . 3 (𝑧 = 𝑦 → ((𝑧𝐴 ∧ ¬ 𝑧𝐵) ↔ (𝑦𝐴 ∧ ¬ 𝑦𝐵)))
109cbvabv 2295 . 2 {𝑧 ∣ (𝑧𝐴 ∧ ¬ 𝑧𝐵)} = {𝑦 ∣ (𝑦𝐴 ∧ ¬ 𝑦𝐵)}
115, 10eqtri 2191 1 {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)} = {𝑦 ∣ (𝑦𝐴 ∧ ¬ 𝑦𝐵)}
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103   = wceq 1348  wcel 2141  {cab 2156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator