ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difjust GIF version

Theorem difjust 3117
Description: Soundness justification theorem for df-dif 3118. (Contributed by Rodolfo Medina, 27-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
difjust {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)} = {𝑦 ∣ (𝑦𝐴 ∧ ¬ 𝑦𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑦,𝐴   𝑦,𝐵

Proof of Theorem difjust
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2229 . . . 4 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
2 eleq1 2229 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐵𝑧𝐵))
32notbid 657 . . . 4 (𝑥 = 𝑧 → (¬ 𝑥𝐵 ↔ ¬ 𝑧𝐵))
41, 3anbi12d 465 . . 3 (𝑥 = 𝑧 → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ↔ (𝑧𝐴 ∧ ¬ 𝑧𝐵)))
54cbvabv 2291 . 2 {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)} = {𝑧 ∣ (𝑧𝐴 ∧ ¬ 𝑧𝐵)}
6 eleq1 2229 . . . 4 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
7 eleq1 2229 . . . . 5 (𝑧 = 𝑦 → (𝑧𝐵𝑦𝐵))
87notbid 657 . . . 4 (𝑧 = 𝑦 → (¬ 𝑧𝐵 ↔ ¬ 𝑦𝐵))
96, 8anbi12d 465 . . 3 (𝑧 = 𝑦 → ((𝑧𝐴 ∧ ¬ 𝑧𝐵) ↔ (𝑦𝐴 ∧ ¬ 𝑦𝐵)))
109cbvabv 2291 . 2 {𝑧 ∣ (𝑧𝐴 ∧ ¬ 𝑧𝐵)} = {𝑦 ∣ (𝑦𝐴 ∧ ¬ 𝑦𝐵)}
115, 10eqtri 2186 1 {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)} = {𝑦 ∣ (𝑦𝐴 ∧ ¬ 𝑦𝐵)}
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103   = wceq 1343  wcel 2136  {cab 2151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator