| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difjust | GIF version | ||
| Description: Soundness justification theorem for df-dif 3167. (Contributed by Rodolfo Medina, 27-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| difjust | ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2267 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
| 2 | eleq1 2267 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) | |
| 3 | 2 | notbid 668 | . . . 4 ⊢ (𝑥 = 𝑧 → (¬ 𝑥 ∈ 𝐵 ↔ ¬ 𝑧 ∈ 𝐵)) |
| 4 | 1, 3 | anbi12d 473 | . . 3 ⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ↔ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝐵))) |
| 5 | 4 | cbvabv 2329 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)} = {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝐵)} |
| 6 | eleq1 2267 | . . . 4 ⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 7 | eleq1 2267 | . . . . 5 ⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
| 8 | 7 | notbid 668 | . . . 4 ⊢ (𝑧 = 𝑦 → (¬ 𝑧 ∈ 𝐵 ↔ ¬ 𝑦 ∈ 𝐵)) |
| 9 | 6, 8 | anbi12d 473 | . . 3 ⊢ (𝑧 = 𝑦 → ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵))) |
| 10 | 9 | cbvabv 2329 | . 2 ⊢ {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝐵)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵)} |
| 11 | 5, 10 | eqtri 2225 | 1 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵)} |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 = wceq 1372 ∈ wcel 2175 {cab 2190 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |