ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvabv Unicode version

Theorem cbvabv 2282
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 26-May-1999.)
Hypothesis
Ref Expression
cbvabv.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvabv  |-  { x  |  ph }  =  {
y  |  ps }
Distinct variable groups:    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem cbvabv
StepHypRef Expression
1 nfv 1508 . 2  |-  F/ y
ph
2 nfv 1508 . 2  |-  F/ x ps
3 cbvabv.1 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
41, 2, 3cbvab 2281 1  |-  { x  |  ph }  =  {
y  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1335   {cab 2143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150
This theorem is referenced by:  cdeqab1  2929  difjust  3103  unjust  3105  injust  3107  uniiunlem  3216  dfif3  3518  pwjust  3544  snjust  3565  intab  3836  iotajust  5134  tfrlemi1  6279  tfr1onlemaccex  6295  tfrcllemaccex  6308  frecsuc  6354  isbth  6911  nqprlu  7467  recexpr  7558  caucvgprprlemval  7608  caucvgprprlemnbj  7613  caucvgprprlemaddq  7628  caucvgprprlem1  7629  caucvgprprlem2  7630  axcaucvg  7820  mertensabs  11434  bds  13437
  Copyright terms: Public domain W3C validator