ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvelim Unicode version

Theorem dvelim 2005
Description: This theorem can be used to eliminate a distinct variable restriction on  x and  z and replace it with the "distinctor"  -.  A. x x  =  y as an antecedent.  ph normally has  z free and can be read  ph ( z ), and  ps substitutes  y for  z and can be read  ph ( y ). We don't require that 
x and  y be distinct: if they aren't, the distinctor will become false (in multiple-element domains of discourse) and "protect" the consequent.

To obtain a closed-theorem form of this inference, prefix the hypotheses with  A. x A. z, conjoin them, and apply dvelimdf 2004.

Other variants of this theorem are dvelimf 2003 (with no distinct variable restrictions) and dvelimALT 1998 (that avoids ax-10 1493). (Contributed by NM, 23-Nov-1994.)

Hypotheses
Ref Expression
dvelim.1  |-  ( ph  ->  A. x ph )
dvelim.2  |-  ( z  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
dvelim  |-  ( -. 
A. x  x  =  y  ->  ( ps  ->  A. x ps )
)
Distinct variable group:    ps, z
Allowed substitution hints:    ph( x, y, z)    ps( x, y)

Proof of Theorem dvelim
StepHypRef Expression
1 dvelim.1 . 2  |-  ( ph  ->  A. x ph )
2 ax-17 1514 . 2  |-  ( ps 
->  A. z ps )
3 dvelim.2 . 2  |-  ( z  =  y  ->  ( ph 
<->  ps ) )
41, 2, 3dvelimf 2003 1  |-  ( -. 
A. x  x  =  y  ->  ( ps  ->  A. x ps )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104   A.wal 1341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator