ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvelimf Unicode version

Theorem dvelimf 2003
Description: Version of dvelim 2005 without any variable restrictions. (Contributed by NM, 1-Oct-2002.)
Hypotheses
Ref Expression
dvelimf.1  |-  ( ph  ->  A. x ph )
dvelimf.2  |-  ( ps 
->  A. z ps )
dvelimf.3  |-  ( z  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
dvelimf  |-  ( -. 
A. x  x  =  y  ->  ( ps  ->  A. x ps )
)

Proof of Theorem dvelimf
StepHypRef Expression
1 dvelimf.1 . . 3  |-  ( ph  ->  A. x ph )
21hbsb4 2000 . 2  |-  ( -. 
A. x  x  =  y  ->  ( [
y  /  z ]
ph  ->  A. x [ y  /  z ] ph ) )
3 dvelimf.2 . . 3  |-  ( ps 
->  A. z ps )
4 dvelimf.3 . . 3  |-  ( z  =  y  ->  ( ph 
<->  ps ) )
53, 4sbieh 1778 . 2  |-  ( [ y  /  z ]
ph 
<->  ps )
65albii 1458 . 2  |-  ( A. x [ y  /  z ] ph  <->  A. x ps )
72, 5, 63imtr3g 203 1  |-  ( -. 
A. x  x  =  y  ->  ( ps  ->  A. x ps )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104   A.wal 1341   [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751
This theorem is referenced by:  dvelim  2005  dveel1  2145  dveel2  2146
  Copyright terms: Public domain W3C validator