ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvelimf Unicode version

Theorem dvelimf 2034
Description: Version of dvelim 2036 without any variable restrictions. (Contributed by NM, 1-Oct-2002.)
Hypotheses
Ref Expression
dvelimf.1  |-  ( ph  ->  A. x ph )
dvelimf.2  |-  ( ps 
->  A. z ps )
dvelimf.3  |-  ( z  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
dvelimf  |-  ( -. 
A. x  x  =  y  ->  ( ps  ->  A. x ps )
)

Proof of Theorem dvelimf
StepHypRef Expression
1 dvelimf.1 . . 3  |-  ( ph  ->  A. x ph )
21hbsb4 2031 . 2  |-  ( -. 
A. x  x  =  y  ->  ( [
y  /  z ]
ph  ->  A. x [ y  /  z ] ph ) )
3 dvelimf.2 . . 3  |-  ( ps 
->  A. z ps )
4 dvelimf.3 . . 3  |-  ( z  =  y  ->  ( ph 
<->  ps ) )
53, 4sbieh 1804 . 2  |-  ( [ y  /  z ]
ph 
<->  ps )
65albii 1484 . 2  |-  ( A. x [ y  /  z ] ph  <->  A. x ps )
72, 5, 63imtr3g 204 1  |-  ( -. 
A. x  x  =  y  ->  ( ps  ->  A. x ps )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105   A.wal 1362   [wsb 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777
This theorem is referenced by:  dvelim  2036  dveel1  2176  dveel2  2177
  Copyright terms: Public domain W3C validator