Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvelimALT | Unicode version |
Description: Version of dvelim 2005 that doesn't use ax-10 1493. Because it has different distinct variable constraints than dvelim 2005 and is used in important proofs, it would be better if it had a name which does not end in ALT (ideally more close to set.mm naming). (Contributed by NM, 17-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dvelimALT.1 | |
dvelimALT.2 |
Ref | Expression |
---|---|
dvelimALT |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1516 | . . . 4 | |
2 | ax12or 1496 | . . . . . . . . 9 | |
3 | orcom 718 | . . . . . . . . . 10 | |
4 | 3 | orbi2i 752 | . . . . . . . . 9 |
5 | 2, 4 | mpbi 144 | . . . . . . . 8 |
6 | orass 757 | . . . . . . . 8 | |
7 | 5, 6 | mpbir 145 | . . . . . . 7 |
8 | nfa1 1529 | . . . . . . . . . . 11 | |
9 | ax16ALT 1847 | . . . . . . . . . . 11 | |
10 | 8, 9 | nfd 1511 | . . . . . . . . . 10 |
11 | dvelimALT.1 | . . . . . . . . . . . 12 | |
12 | 11 | nfi 1450 | . . . . . . . . . . 11 |
13 | 12 | a1i 9 | . . . . . . . . . 10 |
14 | 10, 13 | nfimd 1573 | . . . . . . . . 9 |
15 | df-nf 1449 | . . . . . . . . . 10 | |
16 | id 19 | . . . . . . . . . . 11 | |
17 | 12 | a1i 9 | . . . . . . . . . . 11 |
18 | 16, 17 | nfimd 1573 | . . . . . . . . . 10 |
19 | 15, 18 | sylbir 134 | . . . . . . . . 9 |
20 | 14, 19 | jaoi 706 | . . . . . . . 8 |
21 | 20 | orim1i 750 | . . . . . . 7 |
22 | 7, 21 | ax-mp 5 | . . . . . 6 |
23 | orcom 718 | . . . . . 6 | |
24 | 22, 23 | mpbi 144 | . . . . 5 |
25 | 24 | ori 713 | . . . 4 |
26 | 1, 25 | nfald 1748 | . . 3 |
27 | ax-17 1514 | . . . . 5 | |
28 | dvelimALT.2 | . . . . 5 | |
29 | 27, 28 | equsalh 1714 | . . . 4 |
30 | 29 | nfbii 1461 | . . 3 |
31 | 26, 30 | sylib 121 | . 2 |
32 | 31 | nfrd 1508 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 104 wo 698 wal 1341 wnf 1448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-i12 1495 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 |
This theorem is referenced by: hbsb4 2000 |
Copyright terms: Public domain | W3C validator |