| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvelimALT | Unicode version | ||
| Description: Version of dvelim 2036 that doesn't use ax-10 1519. Because it has different distinct variable constraints than dvelim 2036 and is used in important proofs, it would be better if it had a name which does not end in ALT (ideally more close to set.mm naming). (Contributed by NM, 17-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dvelimALT.1 |
|
| dvelimALT.2 |
|
| Ref | Expression |
|---|---|
| dvelimALT |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 |
. . . 4
| |
| 2 | ax12or 1522 |
. . . . . . . . 9
| |
| 3 | orcom 729 |
. . . . . . . . . 10
| |
| 4 | 3 | orbi2i 763 |
. . . . . . . . 9
|
| 5 | 2, 4 | mpbi 145 |
. . . . . . . 8
|
| 6 | orass 768 |
. . . . . . . 8
| |
| 7 | 5, 6 | mpbir 146 |
. . . . . . 7
|
| 8 | nfa1 1555 |
. . . . . . . . . . 11
| |
| 9 | ax16ALT 1873 |
. . . . . . . . . . 11
| |
| 10 | 8, 9 | nfd 1537 |
. . . . . . . . . 10
|
| 11 | dvelimALT.1 |
. . . . . . . . . . . 12
| |
| 12 | 11 | nfi 1476 |
. . . . . . . . . . 11
|
| 13 | 12 | a1i 9 |
. . . . . . . . . 10
|
| 14 | 10, 13 | nfimd 1599 |
. . . . . . . . 9
|
| 15 | df-nf 1475 |
. . . . . . . . . 10
| |
| 16 | id 19 |
. . . . . . . . . . 11
| |
| 17 | 12 | a1i 9 |
. . . . . . . . . . 11
|
| 18 | 16, 17 | nfimd 1599 |
. . . . . . . . . 10
|
| 19 | 15, 18 | sylbir 135 |
. . . . . . . . 9
|
| 20 | 14, 19 | jaoi 717 |
. . . . . . . 8
|
| 21 | 20 | orim1i 761 |
. . . . . . 7
|
| 22 | 7, 21 | ax-mp 5 |
. . . . . 6
|
| 23 | orcom 729 |
. . . . . 6
| |
| 24 | 22, 23 | mpbi 145 |
. . . . 5
|
| 25 | 24 | ori 724 |
. . . 4
|
| 26 | 1, 25 | nfald 1774 |
. . 3
|
| 27 | ax-17 1540 |
. . . . 5
| |
| 28 | dvelimALT.2 |
. . . . 5
| |
| 29 | 27, 28 | equsalh 1740 |
. . . 4
|
| 30 | 29 | nfbii 1487 |
. . 3
|
| 31 | 26, 30 | sylib 122 |
. 2
|
| 32 | 31 | nfrd 1534 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-i12 1521 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 |
| This theorem is referenced by: hbsb4 2031 |
| Copyright terms: Public domain | W3C validator |