ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvelim GIF version

Theorem dvelim 2033
Description: This theorem can be used to eliminate a distinct variable restriction on 𝑥 and 𝑧 and replace it with the "distinctor" ¬ ∀𝑥𝑥 = 𝑦 as an antecedent. 𝜑 normally has 𝑧 free and can be read 𝜑(𝑧), and 𝜓 substitutes 𝑦 for 𝑧 and can be read 𝜑(𝑦). We don't require that 𝑥 and 𝑦 be distinct: if they aren't, the distinctor will become false (in multiple-element domains of discourse) and "protect" the consequent.

To obtain a closed-theorem form of this inference, prefix the hypotheses with 𝑥𝑧, conjoin them, and apply dvelimdf 2032.

Other variants of this theorem are dvelimf 2031 (with no distinct variable restrictions) and dvelimALT 2026 (that avoids ax-10 1516). (Contributed by NM, 23-Nov-1994.)

Hypotheses
Ref Expression
dvelim.1 (𝜑 → ∀𝑥𝜑)
dvelim.2 (𝑧 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
dvelim (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
Distinct variable group:   𝜓,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦)

Proof of Theorem dvelim
StepHypRef Expression
1 dvelim.1 . 2 (𝜑 → ∀𝑥𝜑)
2 ax-17 1537 . 2 (𝜓 → ∀𝑧𝜓)
3 dvelim.2 . 2 (𝑧 = 𝑦 → (𝜑𝜓))
41, 2, 3dvelimf 2031 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wal 1362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator