| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvelim | GIF version | ||
| Description: This theorem can be used
to eliminate a distinct variable restriction on
𝑥 and 𝑧 and replace it with the
"distinctor" ¬ ∀𝑥𝑥 = 𝑦
as an antecedent. 𝜑 normally has 𝑧 free and can be read
𝜑(𝑧), and 𝜓 substitutes 𝑦 for
𝑧
and can be read
𝜑(𝑦). We don't require that 𝑥 and
𝑦
be distinct: if
they aren't, the distinctor will become false (in multiple-element
domains of discourse) and "protect" the consequent.
To obtain a closed-theorem form of this inference, prefix the hypotheses with ∀𝑥∀𝑧, conjoin them, and apply dvelimdf 2047. Other variants of this theorem are dvelimf 2046 (with no distinct variable restrictions) and dvelimALT 2041 (that avoids ax-10 1531). (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| dvelim.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| dvelim.2 | ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| dvelim | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvelim.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | ax-17 1552 | . 2 ⊢ (𝜓 → ∀𝑧𝜓) | |
| 3 | dvelim.2 | . 2 ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | dvelimf 2046 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∀wal 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |