| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dvelimor | Unicode version | ||
| Description: Disjunctive distinct
variable constraint elimination.  A user of this
       theorem starts with a formula  | 
| Ref | Expression | 
|---|---|
| dvelimor.1 | 
 | 
| dvelimor.2 | 
 | 
| Ref | Expression | 
|---|---|
| dvelimor | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-bndl 1523 | 
. . . . . 6
 | |
| 2 | orcom 729 | 
. . . . . . 7
 | |
| 3 | 2 | orbi2i 763 | 
. . . . . 6
 | 
| 4 | 1, 3 | mpbi 145 | 
. . . . 5
 | 
| 5 | orass 768 | 
. . . . 5
 | |
| 6 | 4, 5 | mpbir 146 | 
. . . 4
 | 
| 7 | nfae 1733 | 
. . . . . . 7
 | |
| 8 | a16nf 1880 | 
. . . . . . 7
 | |
| 9 | 7, 8 | alrimi 1536 | 
. . . . . 6
 | 
| 10 | df-nf 1475 | 
. . . . . . . 8
 | |
| 11 | id 19 | 
. . . . . . . . 9
 | |
| 12 | dvelimor.1 | 
. . . . . . . . . 10
 | |
| 13 | 12 | a1i 9 | 
. . . . . . . . 9
 | 
| 14 | 11, 13 | nfimd 1599 | 
. . . . . . . 8
 | 
| 15 | 10, 14 | sylbir 135 | 
. . . . . . 7
 | 
| 16 | 15 | alimi 1469 | 
. . . . . 6
 | 
| 17 | 9, 16 | jaoi 717 | 
. . . . 5
 | 
| 18 | 17 | orim1i 761 | 
. . . 4
 | 
| 19 | 6, 18 | ax-mp 5 | 
. . 3
 | 
| 20 | orcom 729 | 
. . 3
 | |
| 21 | 19, 20 | mpbi 145 | 
. 2
 | 
| 22 | nfalt 1592 | 
. . . 4
 | |
| 23 | ax-17 1540 | 
. . . . . 6
 | |
| 24 | dvelimor.2 | 
. . . . . 6
 | |
| 25 | 23, 24 | equsalh 1740 | 
. . . . 5
 | 
| 26 | 25 | nfbii 1487 | 
. . . 4
 | 
| 27 | 22, 26 | sylib 122 | 
. . 3
 | 
| 28 | 27 | orim2i 762 | 
. 2
 | 
| 29 | 21, 28 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 | 
| This theorem is referenced by: nfsb4or 2040 rgen2a 2551 | 
| Copyright terms: Public domain | W3C validator |