ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxiflemlub Unicode version

Theorem xrmaxiflemlub 11189
Description: Lemma for xrmaxif 11192. A least upper bound for  { A ,  B }. (Contributed by Jim Kingdon, 28-Apr-2023.)
Hypotheses
Ref Expression
xrmaxiflemlub.a  |-  ( ph  ->  A  e.  RR* )
xrmaxiflemlub.b  |-  ( ph  ->  B  e.  RR* )
xrmaxiflemlub.c  |-  ( ph  ->  C  e.  RR* )
xrmaxiflemlub.clt  |-  ( ph  ->  C  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )
Assertion
Ref Expression
xrmaxiflemlub  |-  ( ph  ->  ( C  <  A  \/  C  <  B ) )

Proof of Theorem xrmaxiflemlub
StepHypRef Expression
1 xrmaxiflemlub.clt . . 3  |-  ( ph  ->  C  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )
2 xrmaxiflemlub.c . . . 4  |-  ( ph  ->  C  e.  RR* )
3 xrmaxiflemlub.a . . . . 5  |-  ( ph  ->  A  e.  RR* )
4 xrmaxiflemlub.b . . . . 5  |-  ( ph  ->  B  e.  RR* )
5 xrmaxiflemcl 11186 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  e.  RR* )
63, 4, 5syl2anc 409 . . . 4  |-  ( ph  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  e.  RR* )
7 xrltso 9732 . . . . 5  |-  <  Or  RR*
8 sowlin 4298 . . . . 5  |-  ( (  <  Or  RR*  /\  ( C  e.  RR*  /\  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  e.  RR*  /\  A  e.  RR* ) )  -> 
( C  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  ->  ( C  <  A  \/  A  < 
if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) ) ) )
97, 8mpan 421 . . . 4  |-  ( ( C  e.  RR*  /\  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  e.  RR*  /\  A  e.  RR* )  ->  ( C  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) )  ->  ( C  < 
A  \/  A  < 
if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) ) ) )
102, 6, 3, 9syl3anc 1228 . . 3  |-  ( ph  ->  ( C  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  ->  ( C  <  A  \/  A  < 
if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) ) ) )
111, 10mpd 13 . 2  |-  ( ph  ->  ( C  <  A  \/  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) ) )
121adantr 274 . . . . 5  |-  ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  ->  C  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )
133adantr 274 . . . . . 6  |-  ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  ->  A  e.  RR* )
144adantr 274 . . . . . 6  |-  ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  ->  B  e.  RR* )
15 simplr 520 . . . . . . . . 9  |-  ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  B  = +oo )  ->  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )
16 simpr 109 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  B  = +oo )  ->  B  = +oo )
1716iftrued 3527 . . . . . . . . 9  |-  ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  B  = +oo )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  = +oo )
1815, 17breqtrd 4008 . . . . . . . 8  |-  ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  B  = +oo )  ->  A  < +oo )
1918, 16breqtrrd 4010 . . . . . . 7  |-  ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  B  = +oo )  ->  A  <  B )
20 simplr 520 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  ->  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )
21 simpr 109 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  ->  -.  B  = +oo )
2221iffalsed 3530 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) )  =  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) )
2320, 22breqtrd 4008 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  ->  A  <  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )
2423adantr 274 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  B  = -oo )  ->  A  <  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) )
25 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  B  = -oo )  ->  B  = -oo )
2625iftrued 3527 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  B  = -oo )  ->  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) )  =  A )
2724, 26breqtrd 4008 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  B  = -oo )  ->  A  <  A )
28 xrltnr 9715 . . . . . . . . . . 11  |-  ( A  e.  RR*  ->  -.  A  <  A )
293, 28syl 14 . . . . . . . . . 10  |-  ( ph  ->  -.  A  <  A
)
3029ad3antrrr 484 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  B  = -oo )  ->  -.  A  <  A )
3127, 30pm2.21dd 610 . . . . . . . 8  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  B  = -oo )  ->  A  <  B )
3223adantr 274 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  A  <  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )
33 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  -.  B  = -oo )
3433iffalsed 3530 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) )  =  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) )
3532, 34breqtrd 4008 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  A  <  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) )
3635adantr 274 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  A  = +oo )  ->  A  <  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) )
37 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  A  = +oo )  ->  A  = +oo )
3837iftrued 3527 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  A  = +oo )  ->  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) )  = +oo )
3936, 38breqtrd 4008 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  A  = +oo )  ->  A  < +oo )
40 nltpnft 9750 . . . . . . . . . . . . 13  |-  ( A  e.  RR*  ->  ( A  = +oo  <->  -.  A  < +oo ) )
413, 40syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  = +oo  <->  -.  A  < +oo ) )
4241ad4antr 486 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  A  = +oo )  ->  ( A  = +oo  <->  -.  A  < +oo ) )
4337, 42mpbid 146 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  A  = +oo )  ->  -.  A  < +oo )
4439, 43pm2.21dd 610 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  A  = +oo )  ->  A  <  B
)
4535adantr 274 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  ->  A  <  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) )
46 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  ->  -.  A  = +oo )
4746iffalsed 3530 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  ->  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) )  =  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) )
4845, 47breqtrd 4008 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  ->  A  <  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) )
4948adantr 274 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  A  = -oo )  ->  A  <  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) )
50 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  A  = -oo )  ->  A  = -oo )
5150iftrued 3527 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  A  = -oo )  ->  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
)  =  B )
5249, 51breqtrd 4008 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  A  = -oo )  ->  A  <  B )
5329ad5antr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  A  <  A
)
54 simp-5l 533 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  ph )
55 simp-4r 532 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  B  = +oo )
5654, 55jca 304 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  ( ph  /\  -.  B  = +oo )
)
57 simpllr 524 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  B  = -oo )
5856, 57jca 304 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  ( ( ph  /\  -.  B  = +oo )  /\  -.  B  = -oo ) )
59 simplr 520 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  A  = +oo )
6058, 59jca 304 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )
)
61 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  A  = -oo )
62 simplr 520 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  A  = +oo )
63 simpr 109 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  A  = -oo )
64 elxr 9712 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
653, 64sylib 121 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
6665ad4antr 486 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
6762, 63, 66ecase23d 1340 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  A  e.  RR )
6860, 61, 67syl2anc 409 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  A  e.  RR )
69 simp-4r 532 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  B  = +oo )
70 simpllr 524 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  B  = -oo )
71 elxr 9712 . . . . . . . . . . . . . . . . 17  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
724, 71sylib 121 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
7372ad4antr 486 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
7469, 70, 73ecase23d 1340 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  B  e.  RR )
7560, 61, 74syl2anc 409 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  B  e.  RR )
7648adantr 274 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  A  <  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) )
7761iffalsed 3530 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) )  =  sup ( { A ,  B } ,  RR ,  <  ) )
7876, 77breqtrd 4008 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  A  <  sup ( { A ,  B } ,  RR ,  <  )
)
79 maxleastlt 11157 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  e.  RR  /\  A  <  sup ( { A ,  B } ,  RR ,  <  ) ) )  -> 
( A  <  A  \/  A  <  B ) )
8068, 75, 68, 78, 79syl22anc 1229 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  ( A  <  A  \/  A  <  B ) )
8180orcomd 719 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  ( A  <  B  \/  A  <  A ) )
8253, 81ecased 1339 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  A  <  B )
83 xrmnfdc 9779 . . . . . . . . . . . 12  |-  ( A  e.  RR*  -> DECID  A  = -oo )
84 exmiddc 826 . . . . . . . . . . . 12  |-  (DECID  A  = -oo  ->  ( A  = -oo  \/  -.  A  = -oo ) )
853, 83, 843syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( A  = -oo  \/  -.  A  = -oo ) )
8685ad4antr 486 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  ->  ( A  = -oo  \/  -.  A  = -oo ) )
8752, 82, 86mpjaodan 788 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  ->  A  <  B
)
88 xrpnfdc 9778 . . . . . . . . . . 11  |-  ( A  e.  RR*  -> DECID  A  = +oo )
89 exmiddc 826 . . . . . . . . . . 11  |-  (DECID  A  = +oo  ->  ( A  = +oo  \/  -.  A  = +oo ) )
903, 88, 893syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( A  = +oo  \/  -.  A  = +oo ) )
9190ad3antrrr 484 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  ( A  = +oo  \/  -.  A  = +oo ) )
9244, 87, 91mpjaodan 788 . . . . . . . 8  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  A  <  B )
93 xrmnfdc 9779 . . . . . . . . . 10  |-  ( B  e.  RR*  -> DECID  B  = -oo )
94 exmiddc 826 . . . . . . . . . 10  |-  (DECID  B  = -oo  ->  ( B  = -oo  \/  -.  B  = -oo ) )
954, 93, 943syl 17 . . . . . . . . 9  |-  ( ph  ->  ( B  = -oo  \/  -.  B  = -oo ) )
9695ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  ->  ( B  = -oo  \/  -.  B  = -oo ) )
9731, 92, 96mpjaodan 788 . . . . . . 7  |-  ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  ->  A  <  B
)
98 xrpnfdc 9778 . . . . . . . 8  |-  ( B  e.  RR*  -> DECID  B  = +oo )
99 exmiddc 826 . . . . . . . 8  |-  (DECID  B  = +oo  ->  ( B  = +oo  \/  -.  B  = +oo ) )
10014, 98, 993syl 17 . . . . . . 7  |-  ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  ->  ( B  = +oo  \/  -.  B  = +oo )
)
10119, 97, 100mpjaodan 788 . . . . . 6  |-  ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  ->  A  <  B )
10213, 14, 101xrmaxiflemab 11188 . . . . 5  |-  ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  =  B )
10312, 102breqtrd 4008 . . . 4  |-  ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  ->  C  <  B )
104103ex 114 . . 3  |-  ( ph  ->  ( A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  ->  C  <  B ) )
105104orim2d 778 . 2  |-  ( ph  ->  ( ( C  < 
A  \/  A  < 
if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  -> 
( C  <  A  \/  C  <  B ) ) )
10611, 105mpd 13 1  |-  ( ph  ->  ( C  <  A  \/  C  <  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824    \/ w3o 967    /\ w3a 968    = wceq 1343    e. wcel 2136   ifcif 3520   {cpr 3577   class class class wbr 3982    Or wor 4273   supcsup 6947   RRcr 7752   +oocpnf 7930   -oocmnf 7931   RR*cxr 7932    < clt 7933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-sup 6949  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941
This theorem is referenced by:  xrmaxiflemval  11191  xrmaxleastlt  11197
  Copyright terms: Public domain W3C validator