ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxiflemlub Unicode version

Theorem xrmaxiflemlub 11413
Description: Lemma for xrmaxif 11416. A least upper bound for  { A ,  B }. (Contributed by Jim Kingdon, 28-Apr-2023.)
Hypotheses
Ref Expression
xrmaxiflemlub.a  |-  ( ph  ->  A  e.  RR* )
xrmaxiflemlub.b  |-  ( ph  ->  B  e.  RR* )
xrmaxiflemlub.c  |-  ( ph  ->  C  e.  RR* )
xrmaxiflemlub.clt  |-  ( ph  ->  C  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )
Assertion
Ref Expression
xrmaxiflemlub  |-  ( ph  ->  ( C  <  A  \/  C  <  B ) )

Proof of Theorem xrmaxiflemlub
StepHypRef Expression
1 xrmaxiflemlub.clt . . 3  |-  ( ph  ->  C  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )
2 xrmaxiflemlub.c . . . 4  |-  ( ph  ->  C  e.  RR* )
3 xrmaxiflemlub.a . . . . 5  |-  ( ph  ->  A  e.  RR* )
4 xrmaxiflemlub.b . . . . 5  |-  ( ph  ->  B  e.  RR* )
5 xrmaxiflemcl 11410 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  e.  RR* )
63, 4, 5syl2anc 411 . . . 4  |-  ( ph  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  e.  RR* )
7 xrltso 9871 . . . . 5  |-  <  Or  RR*
8 sowlin 4355 . . . . 5  |-  ( (  <  Or  RR*  /\  ( C  e.  RR*  /\  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  e.  RR*  /\  A  e.  RR* ) )  -> 
( C  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  ->  ( C  <  A  \/  A  < 
if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) ) ) )
97, 8mpan 424 . . . 4  |-  ( ( C  e.  RR*  /\  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  e.  RR*  /\  A  e.  RR* )  ->  ( C  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) )  ->  ( C  < 
A  \/  A  < 
if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) ) ) )
102, 6, 3, 9syl3anc 1249 . . 3  |-  ( ph  ->  ( C  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  ->  ( C  <  A  \/  A  < 
if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) ) ) )
111, 10mpd 13 . 2  |-  ( ph  ->  ( C  <  A  \/  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) ) )
121adantr 276 . . . . 5  |-  ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  ->  C  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )
133adantr 276 . . . . . 6  |-  ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  ->  A  e.  RR* )
144adantr 276 . . . . . 6  |-  ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  ->  B  e.  RR* )
15 simplr 528 . . . . . . . . 9  |-  ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  B  = +oo )  ->  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )
16 simpr 110 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  B  = +oo )  ->  B  = +oo )
1716iftrued 3568 . . . . . . . . 9  |-  ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  B  = +oo )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  = +oo )
1815, 17breqtrd 4059 . . . . . . . 8  |-  ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  B  = +oo )  ->  A  < +oo )
1918, 16breqtrrd 4061 . . . . . . 7  |-  ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  B  = +oo )  ->  A  <  B )
20 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  ->  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )
21 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  ->  -.  B  = +oo )
2221iffalsed 3571 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) )  =  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) )
2320, 22breqtrd 4059 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  ->  A  <  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )
2423adantr 276 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  B  = -oo )  ->  A  <  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) )
25 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  B  = -oo )  ->  B  = -oo )
2625iftrued 3568 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  B  = -oo )  ->  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) )  =  A )
2724, 26breqtrd 4059 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  B  = -oo )  ->  A  <  A )
28 xrltnr 9854 . . . . . . . . . . 11  |-  ( A  e.  RR*  ->  -.  A  <  A )
293, 28syl 14 . . . . . . . . . 10  |-  ( ph  ->  -.  A  <  A
)
3029ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  B  = -oo )  ->  -.  A  <  A )
3127, 30pm2.21dd 621 . . . . . . . 8  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  B  = -oo )  ->  A  <  B )
3223adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  A  <  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )
33 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  -.  B  = -oo )
3433iffalsed 3571 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) )  =  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) )
3532, 34breqtrd 4059 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  A  <  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) )
3635adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  A  = +oo )  ->  A  <  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) )
37 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  A  = +oo )  ->  A  = +oo )
3837iftrued 3568 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  A  = +oo )  ->  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) )  = +oo )
3936, 38breqtrd 4059 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  A  = +oo )  ->  A  < +oo )
40 nltpnft 9889 . . . . . . . . . . . . 13  |-  ( A  e.  RR*  ->  ( A  = +oo  <->  -.  A  < +oo ) )
413, 40syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  = +oo  <->  -.  A  < +oo ) )
4241ad4antr 494 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  A  = +oo )  ->  ( A  = +oo  <->  -.  A  < +oo ) )
4337, 42mpbid 147 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  A  = +oo )  ->  -.  A  < +oo )
4439, 43pm2.21dd 621 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  A  = +oo )  ->  A  <  B
)
4535adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  ->  A  <  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) )
46 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  ->  -.  A  = +oo )
4746iffalsed 3571 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  ->  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) )  =  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) )
4845, 47breqtrd 4059 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  ->  A  <  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) )
4948adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  A  = -oo )  ->  A  <  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) )
50 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  A  = -oo )  ->  A  = -oo )
5150iftrued 3568 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  A  = -oo )  ->  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
)  =  B )
5249, 51breqtrd 4059 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  A  = -oo )  ->  A  <  B )
5329ad5antr 496 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  A  <  A
)
54 simp-5l 543 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  ph )
55 simp-4r 542 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  B  = +oo )
5654, 55jca 306 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  ( ph  /\  -.  B  = +oo )
)
57 simpllr 534 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  B  = -oo )
5856, 57jca 306 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  ( ( ph  /\  -.  B  = +oo )  /\  -.  B  = -oo ) )
59 simplr 528 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  A  = +oo )
6058, 59jca 306 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )
)
61 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  A  = -oo )
62 simplr 528 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  A  = +oo )
63 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  A  = -oo )
64 elxr 9851 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
653, 64sylib 122 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
6665ad4antr 494 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
6762, 63, 66ecase23d 1361 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  A  e.  RR )
6860, 61, 67syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  A  e.  RR )
69 simp-4r 542 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  B  = +oo )
70 simpllr 534 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  B  = -oo )
71 elxr 9851 . . . . . . . . . . . . . . . . 17  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
724, 71sylib 122 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
7372ad4antr 494 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
7469, 70, 73ecase23d 1361 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  B  e.  RR )
7560, 61, 74syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  B  e.  RR )
7648adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  A  <  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) )
7761iffalsed 3571 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) )  =  sup ( { A ,  B } ,  RR ,  <  ) )
7876, 77breqtrd 4059 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  A  <  sup ( { A ,  B } ,  RR ,  <  )
)
79 maxleastlt 11380 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  e.  RR  /\  A  <  sup ( { A ,  B } ,  RR ,  <  ) ) )  -> 
( A  <  A  \/  A  <  B ) )
8068, 75, 68, 78, 79syl22anc 1250 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  ( A  <  A  \/  A  <  B ) )
8180orcomd 730 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  ( A  <  B  \/  A  <  A ) )
8253, 81ecased 1360 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  A  <  B )
83 xrmnfdc 9918 . . . . . . . . . . . 12  |-  ( A  e.  RR*  -> DECID  A  = -oo )
84 exmiddc 837 . . . . . . . . . . . 12  |-  (DECID  A  = -oo  ->  ( A  = -oo  \/  -.  A  = -oo ) )
853, 83, 843syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( A  = -oo  \/  -.  A  = -oo ) )
8685ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  ->  ( A  = -oo  \/  -.  A  = -oo ) )
8752, 82, 86mpjaodan 799 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  ->  A  <  B
)
88 xrpnfdc 9917 . . . . . . . . . . 11  |-  ( A  e.  RR*  -> DECID  A  = +oo )
89 exmiddc 837 . . . . . . . . . . 11  |-  (DECID  A  = +oo  ->  ( A  = +oo  \/  -.  A  = +oo ) )
903, 88, 893syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( A  = +oo  \/  -.  A  = +oo ) )
9190ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  ( A  = +oo  \/  -.  A  = +oo ) )
9244, 87, 91mpjaodan 799 . . . . . . . 8  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  A  <  B )
93 xrmnfdc 9918 . . . . . . . . . 10  |-  ( B  e.  RR*  -> DECID  B  = -oo )
94 exmiddc 837 . . . . . . . . . 10  |-  (DECID  B  = -oo  ->  ( B  = -oo  \/  -.  B  = -oo ) )
954, 93, 943syl 17 . . . . . . . . 9  |-  ( ph  ->  ( B  = -oo  \/  -.  B  = -oo ) )
9695ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  ->  ( B  = -oo  \/  -.  B  = -oo ) )
9731, 92, 96mpjaodan 799 . . . . . . 7  |-  ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  ->  A  <  B
)
98 xrpnfdc 9917 . . . . . . . 8  |-  ( B  e.  RR*  -> DECID  B  = +oo )
99 exmiddc 837 . . . . . . . 8  |-  (DECID  B  = +oo  ->  ( B  = +oo  \/  -.  B  = +oo ) )
10014, 98, 993syl 17 . . . . . . 7  |-  ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  ->  ( B  = +oo  \/  -.  B  = +oo )
)
10119, 97, 100mpjaodan 799 . . . . . 6  |-  ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  ->  A  <  B )
10213, 14, 101xrmaxiflemab 11412 . . . . 5  |-  ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  =  B )
10312, 102breqtrd 4059 . . . 4  |-  ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  ->  C  <  B )
104103ex 115 . . 3  |-  ( ph  ->  ( A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  ->  C  <  B ) )
105104orim2d 789 . 2  |-  ( ph  ->  ( ( C  < 
A  \/  A  < 
if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  -> 
( C  <  A  \/  C  <  B ) ) )
10611, 105mpd 13 1  |-  ( ph  ->  ( C  <  A  \/  C  <  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    \/ w3o 979    /\ w3a 980    = wceq 1364    e. wcel 2167   ifcif 3561   {cpr 3623   class class class wbr 4033    Or wor 4330   supcsup 7048   RRcr 7878   +oocpnf 8058   -oocmnf 8059   RR*cxr 8060    < clt 8061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-sup 7050  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-rp 9729  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164
This theorem is referenced by:  xrmaxiflemval  11415  xrmaxleastlt  11421
  Copyright terms: Public domain W3C validator