ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxiflemlub Unicode version

Theorem xrmaxiflemlub 11559
Description: Lemma for xrmaxif 11562. A least upper bound for  { A ,  B }. (Contributed by Jim Kingdon, 28-Apr-2023.)
Hypotheses
Ref Expression
xrmaxiflemlub.a  |-  ( ph  ->  A  e.  RR* )
xrmaxiflemlub.b  |-  ( ph  ->  B  e.  RR* )
xrmaxiflemlub.c  |-  ( ph  ->  C  e.  RR* )
xrmaxiflemlub.clt  |-  ( ph  ->  C  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )
Assertion
Ref Expression
xrmaxiflemlub  |-  ( ph  ->  ( C  <  A  \/  C  <  B ) )

Proof of Theorem xrmaxiflemlub
StepHypRef Expression
1 xrmaxiflemlub.clt . . 3  |-  ( ph  ->  C  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )
2 xrmaxiflemlub.c . . . 4  |-  ( ph  ->  C  e.  RR* )
3 xrmaxiflemlub.a . . . . 5  |-  ( ph  ->  A  e.  RR* )
4 xrmaxiflemlub.b . . . . 5  |-  ( ph  ->  B  e.  RR* )
5 xrmaxiflemcl 11556 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  e.  RR* )
63, 4, 5syl2anc 411 . . . 4  |-  ( ph  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  e.  RR* )
7 xrltso 9918 . . . . 5  |-  <  Or  RR*
8 sowlin 4367 . . . . 5  |-  ( (  <  Or  RR*  /\  ( C  e.  RR*  /\  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  e.  RR*  /\  A  e.  RR* ) )  -> 
( C  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  ->  ( C  <  A  \/  A  < 
if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) ) ) )
97, 8mpan 424 . . . 4  |-  ( ( C  e.  RR*  /\  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  e.  RR*  /\  A  e.  RR* )  ->  ( C  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) )  ->  ( C  < 
A  \/  A  < 
if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) ) ) )
102, 6, 3, 9syl3anc 1250 . . 3  |-  ( ph  ->  ( C  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  ->  ( C  <  A  \/  A  < 
if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) ) ) )
111, 10mpd 13 . 2  |-  ( ph  ->  ( C  <  A  \/  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) ) )
121adantr 276 . . . . 5  |-  ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  ->  C  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )
133adantr 276 . . . . . 6  |-  ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  ->  A  e.  RR* )
144adantr 276 . . . . . 6  |-  ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  ->  B  e.  RR* )
15 simplr 528 . . . . . . . . 9  |-  ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  B  = +oo )  ->  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )
16 simpr 110 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  B  = +oo )  ->  B  = +oo )
1716iftrued 3578 . . . . . . . . 9  |-  ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  B  = +oo )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  = +oo )
1815, 17breqtrd 4070 . . . . . . . 8  |-  ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  B  = +oo )  ->  A  < +oo )
1918, 16breqtrrd 4072 . . . . . . 7  |-  ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  B  = +oo )  ->  A  <  B )
20 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  ->  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )
21 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  ->  -.  B  = +oo )
2221iffalsed 3581 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) )  =  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) )
2320, 22breqtrd 4070 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  ->  A  <  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )
2423adantr 276 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  B  = -oo )  ->  A  <  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) )
25 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  B  = -oo )  ->  B  = -oo )
2625iftrued 3578 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  B  = -oo )  ->  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) )  =  A )
2724, 26breqtrd 4070 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  B  = -oo )  ->  A  <  A )
28 xrltnr 9901 . . . . . . . . . . 11  |-  ( A  e.  RR*  ->  -.  A  <  A )
293, 28syl 14 . . . . . . . . . 10  |-  ( ph  ->  -.  A  <  A
)
3029ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  B  = -oo )  ->  -.  A  <  A )
3127, 30pm2.21dd 621 . . . . . . . 8  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  B  = -oo )  ->  A  <  B )
3223adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  A  <  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )
33 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  -.  B  = -oo )
3433iffalsed 3581 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) )  =  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) )
3532, 34breqtrd 4070 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  A  <  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) )
3635adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  A  = +oo )  ->  A  <  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) )
37 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  A  = +oo )  ->  A  = +oo )
3837iftrued 3578 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  A  = +oo )  ->  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) )  = +oo )
3936, 38breqtrd 4070 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  A  = +oo )  ->  A  < +oo )
40 nltpnft 9936 . . . . . . . . . . . . 13  |-  ( A  e.  RR*  ->  ( A  = +oo  <->  -.  A  < +oo ) )
413, 40syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  = +oo  <->  -.  A  < +oo ) )
4241ad4antr 494 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  A  = +oo )  ->  ( A  = +oo  <->  -.  A  < +oo ) )
4337, 42mpbid 147 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  A  = +oo )  ->  -.  A  < +oo )
4439, 43pm2.21dd 621 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  A  = +oo )  ->  A  <  B
)
4535adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  ->  A  <  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) )
46 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  ->  -.  A  = +oo )
4746iffalsed 3581 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  ->  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) )  =  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) )
4845, 47breqtrd 4070 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  ->  A  <  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) )
4948adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  A  = -oo )  ->  A  <  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) )
50 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  A  = -oo )  ->  A  = -oo )
5150iftrued 3578 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  A  = -oo )  ->  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
)  =  B )
5249, 51breqtrd 4070 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  A  = -oo )  ->  A  <  B )
5329ad5antr 496 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  A  <  A
)
54 simp-5l 543 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  ph )
55 simp-4r 542 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  B  = +oo )
5654, 55jca 306 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  ( ph  /\  -.  B  = +oo )
)
57 simpllr 534 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  B  = -oo )
5856, 57jca 306 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  ( ( ph  /\  -.  B  = +oo )  /\  -.  B  = -oo ) )
59 simplr 528 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  A  = +oo )
6058, 59jca 306 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )
)
61 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  A  = -oo )
62 simplr 528 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  A  = +oo )
63 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  A  = -oo )
64 elxr 9898 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
653, 64sylib 122 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
6665ad4antr 494 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
6762, 63, 66ecase23d 1363 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  A  e.  RR )
6860, 61, 67syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  A  e.  RR )
69 simp-4r 542 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  B  = +oo )
70 simpllr 534 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  B  = -oo )
71 elxr 9898 . . . . . . . . . . . . . . . . 17  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
724, 71sylib 122 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
7372ad4antr 494 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
7469, 70, 73ecase23d 1363 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  B  e.  RR )
7560, 61, 74syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  B  e.  RR )
7648adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  A  <  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) )
7761iffalsed 3581 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) )  =  sup ( { A ,  B } ,  RR ,  <  ) )
7876, 77breqtrd 4070 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  A  <  sup ( { A ,  B } ,  RR ,  <  )
)
79 maxleastlt 11526 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  e.  RR  /\  A  <  sup ( { A ,  B } ,  RR ,  <  ) ) )  -> 
( A  <  A  \/  A  <  B ) )
8068, 75, 68, 78, 79syl22anc 1251 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  ( A  <  A  \/  A  <  B ) )
8180orcomd 731 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  ( A  <  B  \/  A  <  A ) )
8253, 81ecased 1362 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  A  <  B )
83 xrmnfdc 9965 . . . . . . . . . . . 12  |-  ( A  e.  RR*  -> DECID  A  = -oo )
84 exmiddc 838 . . . . . . . . . . . 12  |-  (DECID  A  = -oo  ->  ( A  = -oo  \/  -.  A  = -oo ) )
853, 83, 843syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( A  = -oo  \/  -.  A  = -oo ) )
8685ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  ->  ( A  = -oo  \/  -.  A  = -oo ) )
8752, 82, 86mpjaodan 800 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  ->  A  <  B
)
88 xrpnfdc 9964 . . . . . . . . . . 11  |-  ( A  e.  RR*  -> DECID  A  = +oo )
89 exmiddc 838 . . . . . . . . . . 11  |-  (DECID  A  = +oo  ->  ( A  = +oo  \/  -.  A  = +oo ) )
903, 88, 893syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( A  = +oo  \/  -.  A  = +oo ) )
9190ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  ( A  = +oo  \/  -.  A  = +oo ) )
9244, 87, 91mpjaodan 800 . . . . . . . 8  |-  ( ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) ) )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  A  <  B )
93 xrmnfdc 9965 . . . . . . . . . 10  |-  ( B  e.  RR*  -> DECID  B  = -oo )
94 exmiddc 838 . . . . . . . . . 10  |-  (DECID  B  = -oo  ->  ( B  = -oo  \/  -.  B  = -oo ) )
954, 93, 943syl 17 . . . . . . . . 9  |-  ( ph  ->  ( B  = -oo  \/  -.  B  = -oo ) )
9695ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  ->  ( B  = -oo  \/  -.  B  = -oo ) )
9731, 92, 96mpjaodan 800 . . . . . . 7  |-  ( ( ( ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  /\  -.  B  = +oo )  ->  A  <  B
)
98 xrpnfdc 9964 . . . . . . . 8  |-  ( B  e.  RR*  -> DECID  B  = +oo )
99 exmiddc 838 . . . . . . . 8  |-  (DECID  B  = +oo  ->  ( B  = +oo  \/  -.  B  = +oo ) )
10014, 98, 993syl 17 . . . . . . 7  |-  ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  ->  ( B  = +oo  \/  -.  B  = +oo )
)
10119, 97, 100mpjaodan 800 . . . . . 6  |-  ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  ->  A  <  B )
10213, 14, 101xrmaxiflemab 11558 . . . . 5  |-  ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  =  B )
10312, 102breqtrd 4070 . . . 4  |-  ( (
ph  /\  A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  ->  C  <  B )
104103ex 115 . . 3  |-  ( ph  ->  ( A  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  ->  C  <  B ) )
105104orim2d 790 . 2  |-  ( ph  ->  ( ( C  < 
A  \/  A  < 
if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )  -> 
( C  <  A  \/  C  <  B ) ) )
10611, 105mpd 13 1  |-  ( ph  ->  ( C  <  A  \/  C  <  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    \/ w3o 980    /\ w3a 981    = wceq 1373    e. wcel 2176   ifcif 3571   {cpr 3634   class class class wbr 4044    Or wor 4342   supcsup 7084   RRcr 7924   +oocpnf 8104   -oocmnf 8105   RR*cxr 8106    < clt 8107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-sup 7086  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-rp 9776  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310
This theorem is referenced by:  xrmaxiflemval  11561  xrmaxleastlt  11567
  Copyright terms: Public domain W3C validator