ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxiflemab Unicode version

Theorem xrmaxiflemab 11673
Description: Lemma for xrmaxif 11677. A variation of xrmaxleim 11670- that is, if we know which of two real numbers is larger, we know the maximum of the two. (Contributed by Jim Kingdon, 26-Apr-2023.)
Hypotheses
Ref Expression
xrmaxiflemab.a  |-  ( ph  ->  A  e.  RR* )
xrmaxiflemab.b  |-  ( ph  ->  B  e.  RR* )
xrmaxiflemab.ab  |-  ( ph  ->  A  <  B )
Assertion
Ref Expression
xrmaxiflemab  |-  ( ph  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  =  B )

Proof of Theorem xrmaxiflemab
StepHypRef Expression
1 simpr 110 . . . 4  |-  ( (
ph  /\  B  = +oo )  ->  B  = +oo )
21iftrued 3586 . . 3  |-  ( (
ph  /\  B  = +oo )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) )  = +oo )
32, 1eqtr4d 2243 . 2  |-  ( (
ph  /\  B  = +oo )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) )  =  B )
4 simpr 110 . . . 4  |-  ( (
ph  /\  -.  B  = +oo )  ->  -.  B  = +oo )
54iffalsed 3589 . . 3  |-  ( (
ph  /\  -.  B  = +oo )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  =  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )
6 xrmaxiflemab.ab . . . . . . 7  |-  ( ph  ->  A  <  B )
76ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  -.  B  = +oo )  /\  B  = -oo )  ->  A  <  B
)
8 simpr 110 . . . . . 6  |-  ( ( ( ph  /\  -.  B  = +oo )  /\  B  = -oo )  ->  B  = -oo )
97, 8breqtrd 4085 . . . . 5  |-  ( ( ( ph  /\  -.  B  = +oo )  /\  B  = -oo )  ->  A  < -oo )
10 xrmaxiflemab.a . . . . . . 7  |-  ( ph  ->  A  e.  RR* )
11 nltmnf 9945 . . . . . . 7  |-  ( A  e.  RR*  ->  -.  A  < -oo )
1210, 11syl 14 . . . . . 6  |-  ( ph  ->  -.  A  < -oo )
1312ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  -.  B  = +oo )  /\  B  = -oo )  ->  -.  A  < -oo )
149, 13pm2.21dd 621 . . . 4  |-  ( ( ( ph  /\  -.  B  = +oo )  /\  B  = -oo )  ->  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) )  =  B )
15 simpr 110 . . . . . 6  |-  ( ( ( ph  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  -.  B  = -oo )
1615iffalsed 3589 . . . . 5  |-  ( ( ( ph  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) )  =  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) )
17 simpr 110 . . . . . . . 8  |-  ( ( ( ( ph  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  A  = +oo )  ->  A  = +oo )
186ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( ph  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  A  = +oo )  ->  A  <  B )
1917, 18eqbrtrrd 4083 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  A  = +oo )  -> +oo  <  B )
20 xrmaxiflemab.b . . . . . . . . 9  |-  ( ph  ->  B  e.  RR* )
21 pnfnlt 9944 . . . . . . . . 9  |-  ( B  e.  RR*  ->  -. +oo  <  B )
2220, 21syl 14 . . . . . . . 8  |-  ( ph  ->  -. +oo  <  B
)
2322ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  A  = +oo )  ->  -. +oo 
<  B )
2419, 23pm2.21dd 621 . . . . . 6  |-  ( ( ( ( ph  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  A  = +oo )  ->  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) )  =  B )
25 simpr 110 . . . . . . . 8  |-  ( ( ( ( ph  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  ->  -.  A  = +oo )
2625iffalsed 3589 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  ->  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) )  =  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) )
27 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  A  = -oo )  ->  A  = -oo )
2827iftrued 3586 . . . . . . . 8  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  A  = -oo )  ->  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) )  =  B )
29 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  A  = -oo )
3029iffalsed 3589 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) )  =  sup ( { A ,  B } ,  RR ,  <  ) )
3125adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  A  = +oo )
32 elxr 9933 . . . . . . . . . . . . . 14  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
3310, 32sylib 122 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
3433ad4antr 494 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
3531, 29, 34ecase23d 1363 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  A  e.  RR )
364ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  B  = +oo )
3715ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  B  = -oo )
38 elxr 9933 . . . . . . . . . . . . . 14  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
3920, 38sylib 122 . . . . . . . . . . . . 13  |-  ( ph  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
4039ad4antr 494 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
4136, 37, 40ecase23d 1363 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  B  e.  RR )
4235, 41jca 306 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  ( A  e.  RR  /\  B  e.  RR ) )
436ad4antr 494 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  A  <  B
)
4435, 41, 43ltled 8226 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  A  <_  B
)
45 maxleim 11631 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  ->  sup ( { A ,  B } ,  RR ,  <  )  =  B ) )
4642, 44, 45sylc 62 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  sup ( { A ,  B } ,  RR ,  <  )  =  B )
4730, 46eqtrd 2240 . . . . . . . 8  |-  ( ( ( ( ( ph  /\ 
-.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) )  =  B )
48 xrmnfdc 10000 . . . . . . . . . 10  |-  ( A  e.  RR*  -> DECID  A  = -oo )
49 exmiddc 838 . . . . . . . . . 10  |-  (DECID  A  = -oo  ->  ( A  = -oo  \/  -.  A  = -oo ) )
5010, 48, 493syl 17 . . . . . . . . 9  |-  ( ph  ->  ( A  = -oo  \/  -.  A  = -oo ) )
5150ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( ph  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  ->  ( A  = -oo  \/  -.  A  = -oo ) )
5228, 47, 51mpjaodan 800 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  ->  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) )  =  B )
5326, 52eqtrd 2240 . . . . . 6  |-  ( ( ( ( ph  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  ->  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) )  =  B )
54 xrpnfdc 9999 . . . . . . . 8  |-  ( A  e.  RR*  -> DECID  A  = +oo )
55 exmiddc 838 . . . . . . . 8  |-  (DECID  A  = +oo  ->  ( A  = +oo  \/  -.  A  = +oo ) )
5610, 54, 553syl 17 . . . . . . 7  |-  ( ph  ->  ( A  = +oo  \/  -.  A  = +oo ) )
5756ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  ( A  = +oo  \/  -.  A  = +oo ) )
5824, 53, 57mpjaodan 800 . . . . 5  |-  ( ( ( ph  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) )  =  B )
5916, 58eqtrd 2240 . . . 4  |-  ( ( ( ph  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) )  =  B )
60 xrmnfdc 10000 . . . . . 6  |-  ( B  e.  RR*  -> DECID  B  = -oo )
61 exmiddc 838 . . . . . 6  |-  (DECID  B  = -oo  ->  ( B  = -oo  \/  -.  B  = -oo ) )
6220, 60, 613syl 17 . . . . 5  |-  ( ph  ->  ( B  = -oo  \/  -.  B  = -oo ) )
6362adantr 276 . . . 4  |-  ( (
ph  /\  -.  B  = +oo )  ->  ( B  = -oo  \/  -.  B  = -oo )
)
6414, 59, 63mpjaodan 800 . . 3  |-  ( (
ph  /\  -.  B  = +oo )  ->  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) )  =  B )
655, 64eqtrd 2240 . 2  |-  ( (
ph  /\  -.  B  = +oo )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  =  B )
66 xrpnfdc 9999 . . 3  |-  ( B  e.  RR*  -> DECID  B  = +oo )
67 exmiddc 838 . . 3  |-  (DECID  B  = +oo  ->  ( B  = +oo  \/  -.  B  = +oo ) )
6820, 66, 673syl 17 . 2  |-  ( ph  ->  ( B  = +oo  \/  -.  B  = +oo ) )
693, 65, 68mpjaodan 800 1  |-  ( ph  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710  DECID wdc 836    \/ w3o 980    = wceq 1373    e. wcel 2178   ifcif 3579   {cpr 3644   class class class wbr 4059   supcsup 7110   RRcr 7959   +oocpnf 8139   -oocmnf 8140   RR*cxr 8141    < clt 8142    <_ cle 8143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-apti 8075
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-cnv 4701  df-iota 5251  df-riota 5922  df-sup 7112  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148
This theorem is referenced by:  xrmaxiflemlub  11674
  Copyright terms: Public domain W3C validator