| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrmaxiflemab | Unicode version | ||
| Description: Lemma for xrmaxif 11562. A variation of xrmaxleim 11555- that is, if we know which of two real numbers is larger, we know the maximum of the two. (Contributed by Jim Kingdon, 26-Apr-2023.) |
| Ref | Expression |
|---|---|
| xrmaxiflemab.a |
|
| xrmaxiflemab.b |
|
| xrmaxiflemab.ab |
|
| Ref | Expression |
|---|---|
| xrmaxiflemab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . 4
| |
| 2 | 1 | iftrued 3578 |
. . 3
|
| 3 | 2, 1 | eqtr4d 2241 |
. 2
|
| 4 | simpr 110 |
. . . 4
| |
| 5 | 4 | iffalsed 3581 |
. . 3
|
| 6 | xrmaxiflemab.ab |
. . . . . . 7
| |
| 7 | 6 | ad2antrr 488 |
. . . . . 6
|
| 8 | simpr 110 |
. . . . . 6
| |
| 9 | 7, 8 | breqtrd 4070 |
. . . . 5
|
| 10 | xrmaxiflemab.a |
. . . . . . 7
| |
| 11 | nltmnf 9910 |
. . . . . . 7
| |
| 12 | 10, 11 | syl 14 |
. . . . . 6
|
| 13 | 12 | ad2antrr 488 |
. . . . 5
|
| 14 | 9, 13 | pm2.21dd 621 |
. . . 4
|
| 15 | simpr 110 |
. . . . . 6
| |
| 16 | 15 | iffalsed 3581 |
. . . . 5
|
| 17 | simpr 110 |
. . . . . . . 8
| |
| 18 | 6 | ad3antrrr 492 |
. . . . . . . 8
|
| 19 | 17, 18 | eqbrtrrd 4068 |
. . . . . . 7
|
| 20 | xrmaxiflemab.b |
. . . . . . . . 9
| |
| 21 | pnfnlt 9909 |
. . . . . . . . 9
| |
| 22 | 20, 21 | syl 14 |
. . . . . . . 8
|
| 23 | 22 | ad3antrrr 492 |
. . . . . . 7
|
| 24 | 19, 23 | pm2.21dd 621 |
. . . . . 6
|
| 25 | simpr 110 |
. . . . . . . 8
| |
| 26 | 25 | iffalsed 3581 |
. . . . . . 7
|
| 27 | simpr 110 |
. . . . . . . . 9
| |
| 28 | 27 | iftrued 3578 |
. . . . . . . 8
|
| 29 | simpr 110 |
. . . . . . . . . 10
| |
| 30 | 29 | iffalsed 3581 |
. . . . . . . . 9
|
| 31 | 25 | adantr 276 |
. . . . . . . . . . . 12
|
| 32 | elxr 9898 |
. . . . . . . . . . . . . 14
| |
| 33 | 10, 32 | sylib 122 |
. . . . . . . . . . . . 13
|
| 34 | 33 | ad4antr 494 |
. . . . . . . . . . . 12
|
| 35 | 31, 29, 34 | ecase23d 1363 |
. . . . . . . . . . 11
|
| 36 | 4 | ad3antrrr 492 |
. . . . . . . . . . . 12
|
| 37 | 15 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 38 | elxr 9898 |
. . . . . . . . . . . . . 14
| |
| 39 | 20, 38 | sylib 122 |
. . . . . . . . . . . . 13
|
| 40 | 39 | ad4antr 494 |
. . . . . . . . . . . 12
|
| 41 | 36, 37, 40 | ecase23d 1363 |
. . . . . . . . . . 11
|
| 42 | 35, 41 | jca 306 |
. . . . . . . . . 10
|
| 43 | 6 | ad4antr 494 |
. . . . . . . . . . 11
|
| 44 | 35, 41, 43 | ltled 8191 |
. . . . . . . . . 10
|
| 45 | maxleim 11516 |
. . . . . . . . . 10
| |
| 46 | 42, 44, 45 | sylc 62 |
. . . . . . . . 9
|
| 47 | 30, 46 | eqtrd 2238 |
. . . . . . . 8
|
| 48 | xrmnfdc 9965 |
. . . . . . . . . 10
| |
| 49 | exmiddc 838 |
. . . . . . . . . 10
| |
| 50 | 10, 48, 49 | 3syl 17 |
. . . . . . . . 9
|
| 51 | 50 | ad3antrrr 492 |
. . . . . . . 8
|
| 52 | 28, 47, 51 | mpjaodan 800 |
. . . . . . 7
|
| 53 | 26, 52 | eqtrd 2238 |
. . . . . 6
|
| 54 | xrpnfdc 9964 |
. . . . . . . 8
| |
| 55 | exmiddc 838 |
. . . . . . . 8
| |
| 56 | 10, 54, 55 | 3syl 17 |
. . . . . . 7
|
| 57 | 56 | ad2antrr 488 |
. . . . . 6
|
| 58 | 24, 53, 57 | mpjaodan 800 |
. . . . 5
|
| 59 | 16, 58 | eqtrd 2238 |
. . . 4
|
| 60 | xrmnfdc 9965 |
. . . . . 6
| |
| 61 | exmiddc 838 |
. . . . . 6
| |
| 62 | 20, 60, 61 | 3syl 17 |
. . . . 5
|
| 63 | 62 | adantr 276 |
. . . 4
|
| 64 | 14, 59, 63 | mpjaodan 800 |
. . 3
|
| 65 | 5, 64 | eqtrd 2238 |
. 2
|
| 66 | xrpnfdc 9964 |
. . 3
| |
| 67 | exmiddc 838 |
. . 3
| |
| 68 | 20, 66, 67 | 3syl 17 |
. 2
|
| 69 | 3, 65, 68 | mpjaodan 800 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-pre-ltirr 8037 ax-pre-lttrn 8039 ax-pre-apti 8040 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-xp 4681 df-cnv 4683 df-iota 5232 df-riota 5899 df-sup 7086 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 |
| This theorem is referenced by: xrmaxiflemlub 11559 |
| Copyright terms: Public domain | W3C validator |