| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrmaxiflemab | Unicode version | ||
| Description: Lemma for xrmaxif 11762. A variation of xrmaxleim 11755- that is, if we know which of two real numbers is larger, we know the maximum of the two. (Contributed by Jim Kingdon, 26-Apr-2023.) |
| Ref | Expression |
|---|---|
| xrmaxiflemab.a |
|
| xrmaxiflemab.b |
|
| xrmaxiflemab.ab |
|
| Ref | Expression |
|---|---|
| xrmaxiflemab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . 4
| |
| 2 | 1 | iftrued 3609 |
. . 3
|
| 3 | 2, 1 | eqtr4d 2265 |
. 2
|
| 4 | simpr 110 |
. . . 4
| |
| 5 | 4 | iffalsed 3612 |
. . 3
|
| 6 | xrmaxiflemab.ab |
. . . . . . 7
| |
| 7 | 6 | ad2antrr 488 |
. . . . . 6
|
| 8 | simpr 110 |
. . . . . 6
| |
| 9 | 7, 8 | breqtrd 4109 |
. . . . 5
|
| 10 | xrmaxiflemab.a |
. . . . . . 7
| |
| 11 | nltmnf 9984 |
. . . . . . 7
| |
| 12 | 10, 11 | syl 14 |
. . . . . 6
|
| 13 | 12 | ad2antrr 488 |
. . . . 5
|
| 14 | 9, 13 | pm2.21dd 623 |
. . . 4
|
| 15 | simpr 110 |
. . . . . 6
| |
| 16 | 15 | iffalsed 3612 |
. . . . 5
|
| 17 | simpr 110 |
. . . . . . . 8
| |
| 18 | 6 | ad3antrrr 492 |
. . . . . . . 8
|
| 19 | 17, 18 | eqbrtrrd 4107 |
. . . . . . 7
|
| 20 | xrmaxiflemab.b |
. . . . . . . . 9
| |
| 21 | pnfnlt 9983 |
. . . . . . . . 9
| |
| 22 | 20, 21 | syl 14 |
. . . . . . . 8
|
| 23 | 22 | ad3antrrr 492 |
. . . . . . 7
|
| 24 | 19, 23 | pm2.21dd 623 |
. . . . . 6
|
| 25 | simpr 110 |
. . . . . . . 8
| |
| 26 | 25 | iffalsed 3612 |
. . . . . . 7
|
| 27 | simpr 110 |
. . . . . . . . 9
| |
| 28 | 27 | iftrued 3609 |
. . . . . . . 8
|
| 29 | simpr 110 |
. . . . . . . . . 10
| |
| 30 | 29 | iffalsed 3612 |
. . . . . . . . 9
|
| 31 | 25 | adantr 276 |
. . . . . . . . . . . 12
|
| 32 | elxr 9972 |
. . . . . . . . . . . . . 14
| |
| 33 | 10, 32 | sylib 122 |
. . . . . . . . . . . . 13
|
| 34 | 33 | ad4antr 494 |
. . . . . . . . . . . 12
|
| 35 | 31, 29, 34 | ecase23d 1384 |
. . . . . . . . . . 11
|
| 36 | 4 | ad3antrrr 492 |
. . . . . . . . . . . 12
|
| 37 | 15 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 38 | elxr 9972 |
. . . . . . . . . . . . . 14
| |
| 39 | 20, 38 | sylib 122 |
. . . . . . . . . . . . 13
|
| 40 | 39 | ad4antr 494 |
. . . . . . . . . . . 12
|
| 41 | 36, 37, 40 | ecase23d 1384 |
. . . . . . . . . . 11
|
| 42 | 35, 41 | jca 306 |
. . . . . . . . . 10
|
| 43 | 6 | ad4antr 494 |
. . . . . . . . . . 11
|
| 44 | 35, 41, 43 | ltled 8265 |
. . . . . . . . . 10
|
| 45 | maxleim 11716 |
. . . . . . . . . 10
| |
| 46 | 42, 44, 45 | sylc 62 |
. . . . . . . . 9
|
| 47 | 30, 46 | eqtrd 2262 |
. . . . . . . 8
|
| 48 | xrmnfdc 10039 |
. . . . . . . . . 10
| |
| 49 | exmiddc 841 |
. . . . . . . . . 10
| |
| 50 | 10, 48, 49 | 3syl 17 |
. . . . . . . . 9
|
| 51 | 50 | ad3antrrr 492 |
. . . . . . . 8
|
| 52 | 28, 47, 51 | mpjaodan 803 |
. . . . . . 7
|
| 53 | 26, 52 | eqtrd 2262 |
. . . . . 6
|
| 54 | xrpnfdc 10038 |
. . . . . . . 8
| |
| 55 | exmiddc 841 |
. . . . . . . 8
| |
| 56 | 10, 54, 55 | 3syl 17 |
. . . . . . 7
|
| 57 | 56 | ad2antrr 488 |
. . . . . 6
|
| 58 | 24, 53, 57 | mpjaodan 803 |
. . . . 5
|
| 59 | 16, 58 | eqtrd 2262 |
. . . 4
|
| 60 | xrmnfdc 10039 |
. . . . . 6
| |
| 61 | exmiddc 841 |
. . . . . 6
| |
| 62 | 20, 60, 61 | 3syl 17 |
. . . . 5
|
| 63 | 62 | adantr 276 |
. . . 4
|
| 64 | 14, 59, 63 | mpjaodan 803 |
. . 3
|
| 65 | 5, 64 | eqtrd 2262 |
. 2
|
| 66 | xrpnfdc 10038 |
. . 3
| |
| 67 | exmiddc 841 |
. . 3
| |
| 68 | 20, 66, 67 | 3syl 17 |
. 2
|
| 69 | 3, 65, 68 | mpjaodan 803 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-pre-ltirr 8111 ax-pre-lttrn 8113 ax-pre-apti 8114 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-iota 5278 df-riota 5954 df-sup 7151 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 |
| This theorem is referenced by: xrmaxiflemlub 11759 |
| Copyright terms: Public domain | W3C validator |