Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xrmaxiflemab | Unicode version |
Description: Lemma for xrmaxif 11192. A variation of xrmaxleim 11185- that is, if we know which of two real numbers is larger, we know the maximum of the two. (Contributed by Jim Kingdon, 26-Apr-2023.) |
Ref | Expression |
---|---|
xrmaxiflemab.a | |
xrmaxiflemab.b | |
xrmaxiflemab.ab |
Ref | Expression |
---|---|
xrmaxiflemab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . 4 | |
2 | 1 | iftrued 3527 | . . 3 |
3 | 2, 1 | eqtr4d 2201 | . 2 |
4 | simpr 109 | . . . 4 | |
5 | 4 | iffalsed 3530 | . . 3 |
6 | xrmaxiflemab.ab | . . . . . . 7 | |
7 | 6 | ad2antrr 480 | . . . . . 6 |
8 | simpr 109 | . . . . . 6 | |
9 | 7, 8 | breqtrd 4008 | . . . . 5 |
10 | xrmaxiflemab.a | . . . . . . 7 | |
11 | nltmnf 9724 | . . . . . . 7 | |
12 | 10, 11 | syl 14 | . . . . . 6 |
13 | 12 | ad2antrr 480 | . . . . 5 |
14 | 9, 13 | pm2.21dd 610 | . . . 4 |
15 | simpr 109 | . . . . . 6 | |
16 | 15 | iffalsed 3530 | . . . . 5 |
17 | simpr 109 | . . . . . . . 8 | |
18 | 6 | ad3antrrr 484 | . . . . . . . 8 |
19 | 17, 18 | eqbrtrrd 4006 | . . . . . . 7 |
20 | xrmaxiflemab.b | . . . . . . . . 9 | |
21 | pnfnlt 9723 | . . . . . . . . 9 | |
22 | 20, 21 | syl 14 | . . . . . . . 8 |
23 | 22 | ad3antrrr 484 | . . . . . . 7 |
24 | 19, 23 | pm2.21dd 610 | . . . . . 6 |
25 | simpr 109 | . . . . . . . 8 | |
26 | 25 | iffalsed 3530 | . . . . . . 7 |
27 | simpr 109 | . . . . . . . . 9 | |
28 | 27 | iftrued 3527 | . . . . . . . 8 |
29 | simpr 109 | . . . . . . . . . 10 | |
30 | 29 | iffalsed 3530 | . . . . . . . . 9 |
31 | 25 | adantr 274 | . . . . . . . . . . . 12 |
32 | elxr 9712 | . . . . . . . . . . . . . 14 | |
33 | 10, 32 | sylib 121 | . . . . . . . . . . . . 13 |
34 | 33 | ad4antr 486 | . . . . . . . . . . . 12 |
35 | 31, 29, 34 | ecase23d 1340 | . . . . . . . . . . 11 |
36 | 4 | ad3antrrr 484 | . . . . . . . . . . . 12 |
37 | 15 | ad2antrr 480 | . . . . . . . . . . . 12 |
38 | elxr 9712 | . . . . . . . . . . . . . 14 | |
39 | 20, 38 | sylib 121 | . . . . . . . . . . . . 13 |
40 | 39 | ad4antr 486 | . . . . . . . . . . . 12 |
41 | 36, 37, 40 | ecase23d 1340 | . . . . . . . . . . 11 |
42 | 35, 41 | jca 304 | . . . . . . . . . 10 |
43 | 6 | ad4antr 486 | . . . . . . . . . . 11 |
44 | 35, 41, 43 | ltled 8017 | . . . . . . . . . 10 |
45 | maxleim 11147 | . . . . . . . . . 10 | |
46 | 42, 44, 45 | sylc 62 | . . . . . . . . 9 |
47 | 30, 46 | eqtrd 2198 | . . . . . . . 8 |
48 | xrmnfdc 9779 | . . . . . . . . . 10 DECID | |
49 | exmiddc 826 | . . . . . . . . . 10 DECID | |
50 | 10, 48, 49 | 3syl 17 | . . . . . . . . 9 |
51 | 50 | ad3antrrr 484 | . . . . . . . 8 |
52 | 28, 47, 51 | mpjaodan 788 | . . . . . . 7 |
53 | 26, 52 | eqtrd 2198 | . . . . . 6 |
54 | xrpnfdc 9778 | . . . . . . . 8 DECID | |
55 | exmiddc 826 | . . . . . . . 8 DECID | |
56 | 10, 54, 55 | 3syl 17 | . . . . . . 7 |
57 | 56 | ad2antrr 480 | . . . . . 6 |
58 | 24, 53, 57 | mpjaodan 788 | . . . . 5 |
59 | 16, 58 | eqtrd 2198 | . . . 4 |
60 | xrmnfdc 9779 | . . . . . 6 DECID | |
61 | exmiddc 826 | . . . . . 6 DECID | |
62 | 20, 60, 61 | 3syl 17 | . . . . 5 |
63 | 62 | adantr 274 | . . . 4 |
64 | 14, 59, 63 | mpjaodan 788 | . . 3 |
65 | 5, 64 | eqtrd 2198 | . 2 |
66 | xrpnfdc 9778 | . . 3 DECID | |
67 | exmiddc 826 | . . 3 DECID | |
68 | 20, 66, 67 | 3syl 17 | . 2 |
69 | 3, 65, 68 | mpjaodan 788 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 DECID wdc 824 w3o 967 wceq 1343 wcel 2136 cif 3520 cpr 3577 class class class wbr 3982 csup 6947 cr 7752 cpnf 7930 cmnf 7931 cxr 7932 clt 7933 cle 7934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltirr 7865 ax-pre-lttrn 7867 ax-pre-apti 7868 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-iota 5153 df-riota 5798 df-sup 6949 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 |
This theorem is referenced by: xrmaxiflemlub 11189 |
Copyright terms: Public domain | W3C validator |