| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrmaxiflemab | Unicode version | ||
| Description: Lemma for xrmaxif 11416. A variation of xrmaxleim 11409- that is, if we know which of two real numbers is larger, we know the maximum of the two. (Contributed by Jim Kingdon, 26-Apr-2023.) |
| Ref | Expression |
|---|---|
| xrmaxiflemab.a |
|
| xrmaxiflemab.b |
|
| xrmaxiflemab.ab |
|
| Ref | Expression |
|---|---|
| xrmaxiflemab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . 4
| |
| 2 | 1 | iftrued 3568 |
. . 3
|
| 3 | 2, 1 | eqtr4d 2232 |
. 2
|
| 4 | simpr 110 |
. . . 4
| |
| 5 | 4 | iffalsed 3571 |
. . 3
|
| 6 | xrmaxiflemab.ab |
. . . . . . 7
| |
| 7 | 6 | ad2antrr 488 |
. . . . . 6
|
| 8 | simpr 110 |
. . . . . 6
| |
| 9 | 7, 8 | breqtrd 4059 |
. . . . 5
|
| 10 | xrmaxiflemab.a |
. . . . . . 7
| |
| 11 | nltmnf 9863 |
. . . . . . 7
| |
| 12 | 10, 11 | syl 14 |
. . . . . 6
|
| 13 | 12 | ad2antrr 488 |
. . . . 5
|
| 14 | 9, 13 | pm2.21dd 621 |
. . . 4
|
| 15 | simpr 110 |
. . . . . 6
| |
| 16 | 15 | iffalsed 3571 |
. . . . 5
|
| 17 | simpr 110 |
. . . . . . . 8
| |
| 18 | 6 | ad3antrrr 492 |
. . . . . . . 8
|
| 19 | 17, 18 | eqbrtrrd 4057 |
. . . . . . 7
|
| 20 | xrmaxiflemab.b |
. . . . . . . . 9
| |
| 21 | pnfnlt 9862 |
. . . . . . . . 9
| |
| 22 | 20, 21 | syl 14 |
. . . . . . . 8
|
| 23 | 22 | ad3antrrr 492 |
. . . . . . 7
|
| 24 | 19, 23 | pm2.21dd 621 |
. . . . . 6
|
| 25 | simpr 110 |
. . . . . . . 8
| |
| 26 | 25 | iffalsed 3571 |
. . . . . . 7
|
| 27 | simpr 110 |
. . . . . . . . 9
| |
| 28 | 27 | iftrued 3568 |
. . . . . . . 8
|
| 29 | simpr 110 |
. . . . . . . . . 10
| |
| 30 | 29 | iffalsed 3571 |
. . . . . . . . 9
|
| 31 | 25 | adantr 276 |
. . . . . . . . . . . 12
|
| 32 | elxr 9851 |
. . . . . . . . . . . . . 14
| |
| 33 | 10, 32 | sylib 122 |
. . . . . . . . . . . . 13
|
| 34 | 33 | ad4antr 494 |
. . . . . . . . . . . 12
|
| 35 | 31, 29, 34 | ecase23d 1361 |
. . . . . . . . . . 11
|
| 36 | 4 | ad3antrrr 492 |
. . . . . . . . . . . 12
|
| 37 | 15 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 38 | elxr 9851 |
. . . . . . . . . . . . . 14
| |
| 39 | 20, 38 | sylib 122 |
. . . . . . . . . . . . 13
|
| 40 | 39 | ad4antr 494 |
. . . . . . . . . . . 12
|
| 41 | 36, 37, 40 | ecase23d 1361 |
. . . . . . . . . . 11
|
| 42 | 35, 41 | jca 306 |
. . . . . . . . . 10
|
| 43 | 6 | ad4antr 494 |
. . . . . . . . . . 11
|
| 44 | 35, 41, 43 | ltled 8145 |
. . . . . . . . . 10
|
| 45 | maxleim 11370 |
. . . . . . . . . 10
| |
| 46 | 42, 44, 45 | sylc 62 |
. . . . . . . . 9
|
| 47 | 30, 46 | eqtrd 2229 |
. . . . . . . 8
|
| 48 | xrmnfdc 9918 |
. . . . . . . . . 10
| |
| 49 | exmiddc 837 |
. . . . . . . . . 10
| |
| 50 | 10, 48, 49 | 3syl 17 |
. . . . . . . . 9
|
| 51 | 50 | ad3antrrr 492 |
. . . . . . . 8
|
| 52 | 28, 47, 51 | mpjaodan 799 |
. . . . . . 7
|
| 53 | 26, 52 | eqtrd 2229 |
. . . . . 6
|
| 54 | xrpnfdc 9917 |
. . . . . . . 8
| |
| 55 | exmiddc 837 |
. . . . . . . 8
| |
| 56 | 10, 54, 55 | 3syl 17 |
. . . . . . 7
|
| 57 | 56 | ad2antrr 488 |
. . . . . 6
|
| 58 | 24, 53, 57 | mpjaodan 799 |
. . . . 5
|
| 59 | 16, 58 | eqtrd 2229 |
. . . 4
|
| 60 | xrmnfdc 9918 |
. . . . . 6
| |
| 61 | exmiddc 837 |
. . . . . 6
| |
| 62 | 20, 60, 61 | 3syl 17 |
. . . . 5
|
| 63 | 62 | adantr 276 |
. . . 4
|
| 64 | 14, 59, 63 | mpjaodan 799 |
. . 3
|
| 65 | 5, 64 | eqtrd 2229 |
. 2
|
| 66 | xrpnfdc 9917 |
. . 3
| |
| 67 | exmiddc 837 |
. . 3
| |
| 68 | 20, 66, 67 | 3syl 17 |
. 2
|
| 69 | 3, 65, 68 | mpjaodan 799 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-ltirr 7991 ax-pre-lttrn 7993 ax-pre-apti 7994 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-iota 5219 df-riota 5877 df-sup 7050 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 |
| This theorem is referenced by: xrmaxiflemlub 11413 |
| Copyright terms: Public domain | W3C validator |