Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xrmaxiflemab | Unicode version |
Description: Lemma for xrmaxif 11214. A variation of xrmaxleim 11207- that is, if we know which of two real numbers is larger, we know the maximum of the two. (Contributed by Jim Kingdon, 26-Apr-2023.) |
Ref | Expression |
---|---|
xrmaxiflemab.a | |
xrmaxiflemab.b | |
xrmaxiflemab.ab |
Ref | Expression |
---|---|
xrmaxiflemab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . 4 | |
2 | 1 | iftrued 3533 | . . 3 |
3 | 2, 1 | eqtr4d 2206 | . 2 |
4 | simpr 109 | . . . 4 | |
5 | 4 | iffalsed 3536 | . . 3 |
6 | xrmaxiflemab.ab | . . . . . . 7 | |
7 | 6 | ad2antrr 485 | . . . . . 6 |
8 | simpr 109 | . . . . . 6 | |
9 | 7, 8 | breqtrd 4015 | . . . . 5 |
10 | xrmaxiflemab.a | . . . . . . 7 | |
11 | nltmnf 9745 | . . . . . . 7 | |
12 | 10, 11 | syl 14 | . . . . . 6 |
13 | 12 | ad2antrr 485 | . . . . 5 |
14 | 9, 13 | pm2.21dd 615 | . . . 4 |
15 | simpr 109 | . . . . . 6 | |
16 | 15 | iffalsed 3536 | . . . . 5 |
17 | simpr 109 | . . . . . . . 8 | |
18 | 6 | ad3antrrr 489 | . . . . . . . 8 |
19 | 17, 18 | eqbrtrrd 4013 | . . . . . . 7 |
20 | xrmaxiflemab.b | . . . . . . . . 9 | |
21 | pnfnlt 9744 | . . . . . . . . 9 | |
22 | 20, 21 | syl 14 | . . . . . . . 8 |
23 | 22 | ad3antrrr 489 | . . . . . . 7 |
24 | 19, 23 | pm2.21dd 615 | . . . . . 6 |
25 | simpr 109 | . . . . . . . 8 | |
26 | 25 | iffalsed 3536 | . . . . . . 7 |
27 | simpr 109 | . . . . . . . . 9 | |
28 | 27 | iftrued 3533 | . . . . . . . 8 |
29 | simpr 109 | . . . . . . . . . 10 | |
30 | 29 | iffalsed 3536 | . . . . . . . . 9 |
31 | 25 | adantr 274 | . . . . . . . . . . . 12 |
32 | elxr 9733 | . . . . . . . . . . . . . 14 | |
33 | 10, 32 | sylib 121 | . . . . . . . . . . . . 13 |
34 | 33 | ad4antr 491 | . . . . . . . . . . . 12 |
35 | 31, 29, 34 | ecase23d 1345 | . . . . . . . . . . 11 |
36 | 4 | ad3antrrr 489 | . . . . . . . . . . . 12 |
37 | 15 | ad2antrr 485 | . . . . . . . . . . . 12 |
38 | elxr 9733 | . . . . . . . . . . . . . 14 | |
39 | 20, 38 | sylib 121 | . . . . . . . . . . . . 13 |
40 | 39 | ad4antr 491 | . . . . . . . . . . . 12 |
41 | 36, 37, 40 | ecase23d 1345 | . . . . . . . . . . 11 |
42 | 35, 41 | jca 304 | . . . . . . . . . 10 |
43 | 6 | ad4antr 491 | . . . . . . . . . . 11 |
44 | 35, 41, 43 | ltled 8038 | . . . . . . . . . 10 |
45 | maxleim 11169 | . . . . . . . . . 10 | |
46 | 42, 44, 45 | sylc 62 | . . . . . . . . 9 |
47 | 30, 46 | eqtrd 2203 | . . . . . . . 8 |
48 | xrmnfdc 9800 | . . . . . . . . . 10 DECID | |
49 | exmiddc 831 | . . . . . . . . . 10 DECID | |
50 | 10, 48, 49 | 3syl 17 | . . . . . . . . 9 |
51 | 50 | ad3antrrr 489 | . . . . . . . 8 |
52 | 28, 47, 51 | mpjaodan 793 | . . . . . . 7 |
53 | 26, 52 | eqtrd 2203 | . . . . . 6 |
54 | xrpnfdc 9799 | . . . . . . . 8 DECID | |
55 | exmiddc 831 | . . . . . . . 8 DECID | |
56 | 10, 54, 55 | 3syl 17 | . . . . . . 7 |
57 | 56 | ad2antrr 485 | . . . . . 6 |
58 | 24, 53, 57 | mpjaodan 793 | . . . . 5 |
59 | 16, 58 | eqtrd 2203 | . . . 4 |
60 | xrmnfdc 9800 | . . . . . 6 DECID | |
61 | exmiddc 831 | . . . . . 6 DECID | |
62 | 20, 60, 61 | 3syl 17 | . . . . 5 |
63 | 62 | adantr 274 | . . . 4 |
64 | 14, 59, 63 | mpjaodan 793 | . . 3 |
65 | 5, 64 | eqtrd 2203 | . 2 |
66 | xrpnfdc 9799 | . . 3 DECID | |
67 | exmiddc 831 | . . 3 DECID | |
68 | 20, 66, 67 | 3syl 17 | . 2 |
69 | 3, 65, 68 | mpjaodan 793 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 703 DECID wdc 829 w3o 972 wceq 1348 wcel 2141 cif 3526 cpr 3584 class class class wbr 3989 csup 6959 cr 7773 cpnf 7951 cmnf 7952 cxr 7953 clt 7954 cle 7955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-pre-ltirr 7886 ax-pre-lttrn 7888 ax-pre-apti 7889 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-iota 5160 df-riota 5809 df-sup 6961 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 |
This theorem is referenced by: xrmaxiflemlub 11211 |
Copyright terms: Public domain | W3C validator |