ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemklt Unicode version

Theorem iseqf1olemklt 10258
Description: Lemma for seq3f1o 10277. (Contributed by Jim Kingdon, 21-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemklt.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
iseqf1olemklt.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemklt.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemklt.const  |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `  x )  =  x )
iseqf1olemklt.kj  |-  ( ph  ->  K  =/=  ( `' J `  K ) )
Assertion
Ref Expression
iseqf1olemklt  |-  ( ph  ->  K  <  ( `' J `  K ) )
Distinct variable groups:    x, J    x, K    x, M
Allowed substitution hints:    ph( x)    N( x)

Proof of Theorem iseqf1olemklt
StepHypRef Expression
1 iseqf1olemklt.kj . . 3  |-  ( ph  ->  K  =/=  ( `' J `  K ) )
21neneqd 2329 . 2  |-  ( ph  ->  -.  K  =  ( `' J `  K ) )
3 iseqf1olemklt.j . . . . . 6  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
43adantr 274 . . . . 5  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  J : ( M ... N ) -1-1-onto-> ( M ... N
) )
5 iseqf1olemklt.k . . . . . 6  |-  ( ph  ->  K  e.  ( M ... N ) )
65adantr 274 . . . . 5  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  K  e.  ( M ... N
) )
7 f1ocnvfv2 5679 . . . . 5  |-  ( ( J : ( M ... N ) -1-1-onto-> ( M ... N )  /\  K  e.  ( M ... N ) )  -> 
( J `  ( `' J `  K ) )  =  K )
84, 6, 7syl2anc 408 . . . 4  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( J `  ( `' J `  K )
)  =  K )
9 fveq2 5421 . . . . . 6  |-  ( x  =  ( `' J `  K )  ->  ( J `  x )  =  ( J `  ( `' J `  K ) ) )
10 id 19 . . . . . 6  |-  ( x  =  ( `' J `  K )  ->  x  =  ( `' J `  K ) )
119, 10eqeq12d 2154 . . . . 5  |-  ( x  =  ( `' J `  K )  ->  (
( J `  x
)  =  x  <->  ( J `  ( `' J `  K ) )  =  ( `' J `  K ) ) )
12 iseqf1olemklt.const . . . . . 6  |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `  x )  =  x )
1312adantr 274 . . . . 5  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  A. x  e.  ( M..^ K ) ( J `  x
)  =  x )
14 f1ocnv 5380 . . . . . . . . . . 11  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  `' J : ( M ... N ) -1-1-onto-> ( M ... N
) )
153, 14syl 14 . . . . . . . . . 10  |-  ( ph  ->  `' J : ( M ... N ) -1-1-onto-> ( M ... N ) )
16 f1of 5367 . . . . . . . . . 10  |-  ( `' J : ( M ... N ) -1-1-onto-> ( M ... N )  ->  `' J : ( M ... N ) --> ( M ... N ) )
1715, 16syl 14 . . . . . . . . 9  |-  ( ph  ->  `' J : ( M ... N ) --> ( M ... N ) )
1817, 5ffvelrnd 5556 . . . . . . . 8  |-  ( ph  ->  ( `' J `  K )  e.  ( M ... N ) )
19 elfzuz 9802 . . . . . . . 8  |-  ( ( `' J `  K )  e.  ( M ... N )  ->  ( `' J `  K )  e.  ( ZZ>= `  M
) )
2018, 19syl 14 . . . . . . 7  |-  ( ph  ->  ( `' J `  K )  e.  (
ZZ>= `  M ) )
2120adantr 274 . . . . . 6  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( `' J `  K )  e.  ( ZZ>= `  M
) )
22 elfzelz 9806 . . . . . . . 8  |-  ( K  e.  ( M ... N )  ->  K  e.  ZZ )
235, 22syl 14 . . . . . . 7  |-  ( ph  ->  K  e.  ZZ )
2423adantr 274 . . . . . 6  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  K  e.  ZZ )
25 simpr 109 . . . . . 6  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( `' J `  K )  <  K )
26 elfzo2 9927 . . . . . 6  |-  ( ( `' J `  K )  e.  ( M..^ K
)  <->  ( ( `' J `  K )  e.  ( ZZ>= `  M
)  /\  K  e.  ZZ  /\  ( `' J `  K )  <  K
) )
2721, 24, 25, 26syl3anbrc 1165 . . . . 5  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( `' J `  K )  e.  ( M..^ K
) )
2811, 13, 27rspcdva 2794 . . . 4  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( J `  ( `' J `  K )
)  =  ( `' J `  K ) )
298, 28eqtr3d 2174 . . 3  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  K  =  ( `' J `  K ) )
302, 29mtand 654 . 2  |-  ( ph  ->  -.  ( `' J `  K )  <  K
)
31 elfzelz 9806 . . . 4  |-  ( ( `' J `  K )  e.  ( M ... N )  ->  ( `' J `  K )  e.  ZZ )
3218, 31syl 14 . . 3  |-  ( ph  ->  ( `' J `  K )  e.  ZZ )
33 ztri3or 9097 . . 3  |-  ( ( K  e.  ZZ  /\  ( `' J `  K )  e.  ZZ )  -> 
( K  <  ( `' J `  K )  \/  K  =  ( `' J `  K )  \/  ( `' J `  K )  <  K
) )
3423, 32, 33syl2anc 408 . 2  |-  ( ph  ->  ( K  <  ( `' J `  K )  \/  K  =  ( `' J `  K )  \/  ( `' J `  K )  <  K
) )
352, 30, 34ecase23d 1328 1  |-  ( ph  ->  K  <  ( `' J `  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ w3o 961    = wceq 1331    e. wcel 1480    =/= wne 2308   A.wral 2416   class class class wbr 3929   `'ccnv 4538   -->wf 5119   -1-1-onto->wf1o 5122   ` cfv 5123  (class class class)co 5774    < clt 7800   ZZcz 9054   ZZ>=cuz 9326   ...cfz 9790  ..^cfzo 9919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-fz 9791  df-fzo 9920
This theorem is referenced by:  seq3f1olemqsumkj  10271
  Copyright terms: Public domain W3C validator