ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemklt Unicode version

Theorem iseqf1olemklt 10289
Description: Lemma for seq3f1o 10308. (Contributed by Jim Kingdon, 21-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemklt.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
iseqf1olemklt.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemklt.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemklt.const  |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `  x )  =  x )
iseqf1olemklt.kj  |-  ( ph  ->  K  =/=  ( `' J `  K ) )
Assertion
Ref Expression
iseqf1olemklt  |-  ( ph  ->  K  <  ( `' J `  K ) )
Distinct variable groups:    x, J    x, K    x, M
Allowed substitution hints:    ph( x)    N( x)

Proof of Theorem iseqf1olemklt
StepHypRef Expression
1 iseqf1olemklt.kj . . 3  |-  ( ph  ->  K  =/=  ( `' J `  K ) )
21neneqd 2330 . 2  |-  ( ph  ->  -.  K  =  ( `' J `  K ) )
3 iseqf1olemklt.j . . . . . 6  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
43adantr 274 . . . . 5  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  J : ( M ... N ) -1-1-onto-> ( M ... N
) )
5 iseqf1olemklt.k . . . . . 6  |-  ( ph  ->  K  e.  ( M ... N ) )
65adantr 274 . . . . 5  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  K  e.  ( M ... N
) )
7 f1ocnvfv2 5687 . . . . 5  |-  ( ( J : ( M ... N ) -1-1-onto-> ( M ... N )  /\  K  e.  ( M ... N ) )  -> 
( J `  ( `' J `  K ) )  =  K )
84, 6, 7syl2anc 409 . . . 4  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( J `  ( `' J `  K )
)  =  K )
9 fveq2 5429 . . . . . 6  |-  ( x  =  ( `' J `  K )  ->  ( J `  x )  =  ( J `  ( `' J `  K ) ) )
10 id 19 . . . . . 6  |-  ( x  =  ( `' J `  K )  ->  x  =  ( `' J `  K ) )
119, 10eqeq12d 2155 . . . . 5  |-  ( x  =  ( `' J `  K )  ->  (
( J `  x
)  =  x  <->  ( J `  ( `' J `  K ) )  =  ( `' J `  K ) ) )
12 iseqf1olemklt.const . . . . . 6  |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `  x )  =  x )
1312adantr 274 . . . . 5  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  A. x  e.  ( M..^ K ) ( J `  x
)  =  x )
14 f1ocnv 5388 . . . . . . . . . . 11  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  `' J : ( M ... N ) -1-1-onto-> ( M ... N
) )
153, 14syl 14 . . . . . . . . . 10  |-  ( ph  ->  `' J : ( M ... N ) -1-1-onto-> ( M ... N ) )
16 f1of 5375 . . . . . . . . . 10  |-  ( `' J : ( M ... N ) -1-1-onto-> ( M ... N )  ->  `' J : ( M ... N ) --> ( M ... N ) )
1715, 16syl 14 . . . . . . . . 9  |-  ( ph  ->  `' J : ( M ... N ) --> ( M ... N ) )
1817, 5ffvelrnd 5564 . . . . . . . 8  |-  ( ph  ->  ( `' J `  K )  e.  ( M ... N ) )
19 elfzuz 9833 . . . . . . . 8  |-  ( ( `' J `  K )  e.  ( M ... N )  ->  ( `' J `  K )  e.  ( ZZ>= `  M
) )
2018, 19syl 14 . . . . . . 7  |-  ( ph  ->  ( `' J `  K )  e.  (
ZZ>= `  M ) )
2120adantr 274 . . . . . 6  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( `' J `  K )  e.  ( ZZ>= `  M
) )
22 elfzelz 9837 . . . . . . . 8  |-  ( K  e.  ( M ... N )  ->  K  e.  ZZ )
235, 22syl 14 . . . . . . 7  |-  ( ph  ->  K  e.  ZZ )
2423adantr 274 . . . . . 6  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  K  e.  ZZ )
25 simpr 109 . . . . . 6  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( `' J `  K )  <  K )
26 elfzo2 9958 . . . . . 6  |-  ( ( `' J `  K )  e.  ( M..^ K
)  <->  ( ( `' J `  K )  e.  ( ZZ>= `  M
)  /\  K  e.  ZZ  /\  ( `' J `  K )  <  K
) )
2721, 24, 25, 26syl3anbrc 1166 . . . . 5  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( `' J `  K )  e.  ( M..^ K
) )
2811, 13, 27rspcdva 2798 . . . 4  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( J `  ( `' J `  K )
)  =  ( `' J `  K ) )
298, 28eqtr3d 2175 . . 3  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  K  =  ( `' J `  K ) )
302, 29mtand 655 . 2  |-  ( ph  ->  -.  ( `' J `  K )  <  K
)
31 elfzelz 9837 . . . 4  |-  ( ( `' J `  K )  e.  ( M ... N )  ->  ( `' J `  K )  e.  ZZ )
3218, 31syl 14 . . 3  |-  ( ph  ->  ( `' J `  K )  e.  ZZ )
33 ztri3or 9121 . . 3  |-  ( ( K  e.  ZZ  /\  ( `' J `  K )  e.  ZZ )  -> 
( K  <  ( `' J `  K )  \/  K  =  ( `' J `  K )  \/  ( `' J `  K )  <  K
) )
3423, 32, 33syl2anc 409 . 2  |-  ( ph  ->  ( K  <  ( `' J `  K )  \/  K  =  ( `' J `  K )  \/  ( `' J `  K )  <  K
) )
352, 30, 34ecase23d 1329 1  |-  ( ph  ->  K  <  ( `' J `  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ w3o 962    = wceq 1332    e. wcel 1481    =/= wne 2309   A.wral 2417   class class class wbr 3937   `'ccnv 4546   -->wf 5127   -1-1-onto->wf1o 5130   ` cfv 5131  (class class class)co 5782    < clt 7824   ZZcz 9078   ZZ>=cuz 9350   ...cfz 9821  ..^cfzo 9950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822  df-fzo 9951
This theorem is referenced by:  seq3f1olemqsumkj  10302
  Copyright terms: Public domain W3C validator