ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemklt Unicode version

Theorem iseqf1olemklt 10607
Description: Lemma for seq3f1o 10626. (Contributed by Jim Kingdon, 21-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemklt.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
iseqf1olemklt.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemklt.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemklt.const  |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `  x )  =  x )
iseqf1olemklt.kj  |-  ( ph  ->  K  =/=  ( `' J `  K ) )
Assertion
Ref Expression
iseqf1olemklt  |-  ( ph  ->  K  <  ( `' J `  K ) )
Distinct variable groups:    x, J    x, K    x, M
Allowed substitution hints:    ph( x)    N( x)

Proof of Theorem iseqf1olemklt
StepHypRef Expression
1 iseqf1olemklt.kj . . 3  |-  ( ph  ->  K  =/=  ( `' J `  K ) )
21neneqd 2388 . 2  |-  ( ph  ->  -.  K  =  ( `' J `  K ) )
3 iseqf1olemklt.j . . . . . 6  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
43adantr 276 . . . . 5  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  J : ( M ... N ) -1-1-onto-> ( M ... N
) )
5 iseqf1olemklt.k . . . . . 6  |-  ( ph  ->  K  e.  ( M ... N ) )
65adantr 276 . . . . 5  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  K  e.  ( M ... N
) )
7 f1ocnvfv2 5828 . . . . 5  |-  ( ( J : ( M ... N ) -1-1-onto-> ( M ... N )  /\  K  e.  ( M ... N ) )  -> 
( J `  ( `' J `  K ) )  =  K )
84, 6, 7syl2anc 411 . . . 4  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( J `  ( `' J `  K )
)  =  K )
9 fveq2 5561 . . . . . 6  |-  ( x  =  ( `' J `  K )  ->  ( J `  x )  =  ( J `  ( `' J `  K ) ) )
10 id 19 . . . . . 6  |-  ( x  =  ( `' J `  K )  ->  x  =  ( `' J `  K ) )
119, 10eqeq12d 2211 . . . . 5  |-  ( x  =  ( `' J `  K )  ->  (
( J `  x
)  =  x  <->  ( J `  ( `' J `  K ) )  =  ( `' J `  K ) ) )
12 iseqf1olemklt.const . . . . . 6  |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `  x )  =  x )
1312adantr 276 . . . . 5  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  A. x  e.  ( M..^ K ) ( J `  x
)  =  x )
14 f1ocnv 5520 . . . . . . . . . . 11  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  `' J : ( M ... N ) -1-1-onto-> ( M ... N
) )
153, 14syl 14 . . . . . . . . . 10  |-  ( ph  ->  `' J : ( M ... N ) -1-1-onto-> ( M ... N ) )
16 f1of 5507 . . . . . . . . . 10  |-  ( `' J : ( M ... N ) -1-1-onto-> ( M ... N )  ->  `' J : ( M ... N ) --> ( M ... N ) )
1715, 16syl 14 . . . . . . . . 9  |-  ( ph  ->  `' J : ( M ... N ) --> ( M ... N ) )
1817, 5ffvelcdmd 5701 . . . . . . . 8  |-  ( ph  ->  ( `' J `  K )  e.  ( M ... N ) )
19 elfzuz 10113 . . . . . . . 8  |-  ( ( `' J `  K )  e.  ( M ... N )  ->  ( `' J `  K )  e.  ( ZZ>= `  M
) )
2018, 19syl 14 . . . . . . 7  |-  ( ph  ->  ( `' J `  K )  e.  (
ZZ>= `  M ) )
2120adantr 276 . . . . . 6  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( `' J `  K )  e.  ( ZZ>= `  M
) )
22 elfzelz 10117 . . . . . . . 8  |-  ( K  e.  ( M ... N )  ->  K  e.  ZZ )
235, 22syl 14 . . . . . . 7  |-  ( ph  ->  K  e.  ZZ )
2423adantr 276 . . . . . 6  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  K  e.  ZZ )
25 simpr 110 . . . . . 6  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( `' J `  K )  <  K )
26 elfzo2 10242 . . . . . 6  |-  ( ( `' J `  K )  e.  ( M..^ K
)  <->  ( ( `' J `  K )  e.  ( ZZ>= `  M
)  /\  K  e.  ZZ  /\  ( `' J `  K )  <  K
) )
2721, 24, 25, 26syl3anbrc 1183 . . . . 5  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( `' J `  K )  e.  ( M..^ K
) )
2811, 13, 27rspcdva 2873 . . . 4  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  ( J `  ( `' J `  K )
)  =  ( `' J `  K ) )
298, 28eqtr3d 2231 . . 3  |-  ( (
ph  /\  ( `' J `  K )  <  K )  ->  K  =  ( `' J `  K ) )
302, 29mtand 666 . 2  |-  ( ph  ->  -.  ( `' J `  K )  <  K
)
31 elfzelz 10117 . . . 4  |-  ( ( `' J `  K )  e.  ( M ... N )  ->  ( `' J `  K )  e.  ZZ )
3218, 31syl 14 . . 3  |-  ( ph  ->  ( `' J `  K )  e.  ZZ )
33 ztri3or 9386 . . 3  |-  ( ( K  e.  ZZ  /\  ( `' J `  K )  e.  ZZ )  -> 
( K  <  ( `' J `  K )  \/  K  =  ( `' J `  K )  \/  ( `' J `  K )  <  K
) )
3423, 32, 33syl2anc 411 . 2  |-  ( ph  ->  ( K  <  ( `' J `  K )  \/  K  =  ( `' J `  K )  \/  ( `' J `  K )  <  K
) )
352, 30, 34ecase23d 1361 1  |-  ( ph  ->  K  <  ( `' J `  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ w3o 979    = wceq 1364    e. wcel 2167    =/= wne 2367   A.wral 2475   class class class wbr 4034   `'ccnv 4663   -->wf 5255   -1-1-onto->wf1o 5258   ` cfv 5259  (class class class)co 5925    < clt 8078   ZZcz 9343   ZZ>=cuz 9618   ...cfz 10100  ..^cfzo 10234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-fzo 10235
This theorem is referenced by:  seq3f1olemqsumkj  10620
  Copyright terms: Public domain W3C validator