| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgfng | Unicode version | ||
| Description: Functionality of the group multiple operation. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| mulgfn.b |
|
| mulgfn.t |
|
| Ref | Expression |
|---|---|
| mulgfng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2788 |
. . . . . . 7
| |
| 2 | fn0g 13322 |
. . . . . . . 8
| |
| 3 | funfvex 5616 |
. . . . . . . . 9
| |
| 4 | 3 | funfni 5395 |
. . . . . . . 8
|
| 5 | 2, 4 | mpan 424 |
. . . . . . 7
|
| 6 | 1, 5 | syl 14 |
. . . . . 6
|
| 7 | 6 | ad2antrr 488 |
. . . . 5
|
| 8 | nnuz 9719 |
. . . . . . . . . 10
| |
| 9 | 1zzd 9434 |
. . . . . . . . . 10
| |
| 10 | fvconst2g 5821 |
. . . . . . . . . . . . 13
| |
| 11 | simpl 109 |
. . . . . . . . . . . . 13
| |
| 12 | 10, 11 | eqeltrd 2284 |
. . . . . . . . . . . 12
|
| 13 | 12 | elexd 2790 |
. . . . . . . . . . 11
|
| 14 | 13 | adantll 476 |
. . . . . . . . . 10
|
| 15 | simprl 529 |
. . . . . . . . . . 11
| |
| 16 | plusgslid 13059 |
. . . . . . . . . . . . 13
| |
| 17 | 16 | slotex 12974 |
. . . . . . . . . . . 12
|
| 18 | 17 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 19 | simprr 531 |
. . . . . . . . . . 11
| |
| 20 | ovexg 6001 |
. . . . . . . . . . 11
| |
| 21 | 15, 18, 19, 20 | syl3anc 1250 |
. . . . . . . . . 10
|
| 22 | 8, 9, 14, 21 | seqf 10646 |
. . . . . . . . 9
|
| 23 | 22 | adantrl 478 |
. . . . . . . 8
|
| 24 | 23 | ad2antrr 488 |
. . . . . . 7
|
| 25 | simprl 529 |
. . . . . . . . 9
| |
| 26 | 25 | ad2antrr 488 |
. . . . . . . 8
|
| 27 | simpr 110 |
. . . . . . . 8
| |
| 28 | elnnz 9417 |
. . . . . . . 8
| |
| 29 | 26, 27, 28 | sylanbrc 417 |
. . . . . . 7
|
| 30 | 24, 29 | ffvelcdmd 5739 |
. . . . . 6
|
| 31 | mulgfn.b |
. . . . . . . . . 10
| |
| 32 | eqid 2207 |
. . . . . . . . . 10
| |
| 33 | 31, 32 | grpinvfng 13491 |
. . . . . . . . 9
|
| 34 | basfn 13005 |
. . . . . . . . . . . 12
| |
| 35 | funfvex 5616 |
. . . . . . . . . . . . 13
| |
| 36 | 35 | funfni 5395 |
. . . . . . . . . . . 12
|
| 37 | 34, 36 | mpan 424 |
. . . . . . . . . . 11
|
| 38 | 31, 37 | eqeltrid 2294 |
. . . . . . . . . 10
|
| 39 | 1, 38 | syl 14 |
. . . . . . . . 9
|
| 40 | fnex 5829 |
. . . . . . . . 9
| |
| 41 | 33, 39, 40 | syl2anc 411 |
. . . . . . . 8
|
| 42 | 41 | ad3antrrr 492 |
. . . . . . 7
|
| 43 | 23 | ad2antrr 488 |
. . . . . . . 8
|
| 44 | 25 | znegcld 9532 |
. . . . . . . . . 10
|
| 45 | 44 | ad2antrr 488 |
. . . . . . . . 9
|
| 46 | simplr 528 |
. . . . . . . . . . 11
| |
| 47 | simpr 110 |
. . . . . . . . . . 11
| |
| 48 | ztri3or0 9449 |
. . . . . . . . . . . . 13
| |
| 49 | 25, 48 | syl 14 |
. . . . . . . . . . . 12
|
| 50 | 49 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 51 | 46, 47, 50 | ecase23d 1363 |
. . . . . . . . . 10
|
| 52 | 25 | zred 9530 |
. . . . . . . . . . . 12
|
| 53 | 52 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 54 | 53 | lt0neg1d 8623 |
. . . . . . . . . 10
|
| 55 | 51, 54 | mpbid 147 |
. . . . . . . . 9
|
| 56 | elnnz 9417 |
. . . . . . . . 9
| |
| 57 | 45, 55, 56 | sylanbrc 417 |
. . . . . . . 8
|
| 58 | 43, 57 | ffvelcdmd 5739 |
. . . . . . 7
|
| 59 | fvexg 5618 |
. . . . . . 7
| |
| 60 | 42, 58, 59 | syl2anc 411 |
. . . . . 6
|
| 61 | 0zd 9419 |
. . . . . . 7
| |
| 62 | simplrl 535 |
. . . . . . 7
| |
| 63 | zdclt 9485 |
. . . . . . 7
| |
| 64 | 61, 62, 63 | syl2anc 411 |
. . . . . 6
|
| 65 | 30, 60, 64 | ifcldadc 3609 |
. . . . 5
|
| 66 | 0zd 9419 |
. . . . . 6
| |
| 67 | zdceq 9483 |
. . . . . 6
| |
| 68 | 25, 66, 67 | syl2anc 411 |
. . . . 5
|
| 69 | 7, 65, 68 | ifcldadc 3609 |
. . . 4
|
| 70 | 69 | ralrimivva 2590 |
. . 3
|
| 71 | eqid 2207 |
. . . 4
| |
| 72 | 71 | fnmpo 6311 |
. . 3
|
| 73 | 70, 72 | syl 14 |
. 2
|
| 74 | eqid 2207 |
. . . 4
| |
| 75 | eqid 2207 |
. . . 4
| |
| 76 | mulgfn.t |
. . . 4
| |
| 77 | 31, 74, 75, 32, 76 | mulgfvalg 13572 |
. . 3
|
| 78 | 77 | fneq1d 5383 |
. 2
|
| 79 | 73, 78 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-2 9130 df-n0 9331 df-z 9408 df-uz 9684 df-seqfrec 10630 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-0g 13205 df-minusg 13451 df-mulg 13571 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |