Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulgfng | Unicode version |
Description: Functionality of the group multiple operation. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
mulgfn.b | |
mulgfn.t | .g |
Ref | Expression |
---|---|
mulgfng |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2742 | . . . . . . 7 | |
2 | fn0g 12651 | . . . . . . . 8 | |
3 | funfvex 5516 | . . . . . . . . 9 | |
4 | 3 | funfni 5300 | . . . . . . . 8 |
5 | 2, 4 | mpan 422 | . . . . . . 7 |
6 | 1, 5 | syl 14 | . . . . . 6 |
7 | 6 | ad2antrr 486 | . . . . 5 |
8 | nnuz 9526 | . . . . . . . . . 10 | |
9 | 1zzd 9243 | . . . . . . . . . 10 | |
10 | fvconst2g 5714 | . . . . . . . . . . . . 13 | |
11 | simpl 108 | . . . . . . . . . . . . 13 | |
12 | 10, 11 | eqeltrd 2248 | . . . . . . . . . . . 12 |
13 | 12 | elexd 2744 | . . . . . . . . . . 11 |
14 | 13 | adantll 474 | . . . . . . . . . 10 |
15 | simprl 527 | . . . . . . . . . . 11 | |
16 | plusgslid 12517 | . . . . . . . . . . . . 13 Slot | |
17 | 16 | slotex 12447 | . . . . . . . . . . . 12 |
18 | 17 | ad2antrr 486 | . . . . . . . . . . 11 |
19 | simprr 528 | . . . . . . . . . . 11 | |
20 | ovexg 5891 | . . . . . . . . . . 11 | |
21 | 15, 18, 19, 20 | syl3anc 1234 | . . . . . . . . . 10 |
22 | 8, 9, 14, 21 | seqf 10421 | . . . . . . . . 9 |
23 | 22 | adantrl 476 | . . . . . . . 8 |
24 | 23 | ad2antrr 486 | . . . . . . 7 |
25 | simprl 527 | . . . . . . . . 9 | |
26 | 25 | ad2antrr 486 | . . . . . . . 8 |
27 | simpr 109 | . . . . . . . 8 | |
28 | elnnz 9226 | . . . . . . . 8 | |
29 | 26, 27, 28 | sylanbrc 415 | . . . . . . 7 |
30 | 24, 29 | ffvelrnd 5636 | . . . . . 6 |
31 | mulgfn.b | . . . . . . . . . 10 | |
32 | eqid 2171 | . . . . . . . . . 10 | |
33 | 31, 32 | grpinvfng 12769 | . . . . . . . . 9 |
34 | basfn 12477 | . . . . . . . . . . . 12 | |
35 | funfvex 5516 | . . . . . . . . . . . . 13 | |
36 | 35 | funfni 5300 | . . . . . . . . . . . 12 |
37 | 34, 36 | mpan 422 | . . . . . . . . . . 11 |
38 | 31, 37 | eqeltrid 2258 | . . . . . . . . . 10 |
39 | 1, 38 | syl 14 | . . . . . . . . 9 |
40 | fnex 5722 | . . . . . . . . 9 | |
41 | 33, 39, 40 | syl2anc 409 | . . . . . . . 8 |
42 | 41 | ad3antrrr 490 | . . . . . . 7 |
43 | 23 | ad2antrr 486 | . . . . . . . 8 |
44 | 25 | znegcld 9340 | . . . . . . . . . 10 |
45 | 44 | ad2antrr 486 | . . . . . . . . 9 |
46 | simplr 526 | . . . . . . . . . . 11 | |
47 | simpr 109 | . . . . . . . . . . 11 | |
48 | ztri3or0 9258 | . . . . . . . . . . . . 13 | |
49 | 25, 48 | syl 14 | . . . . . . . . . . . 12 |
50 | 49 | ad2antrr 486 | . . . . . . . . . . 11 |
51 | 46, 47, 50 | ecase23d 1346 | . . . . . . . . . 10 |
52 | 25 | zred 9338 | . . . . . . . . . . . 12 |
53 | 52 | ad2antrr 486 | . . . . . . . . . . 11 |
54 | 53 | lt0neg1d 8438 | . . . . . . . . . 10 |
55 | 51, 54 | mpbid 146 | . . . . . . . . 9 |
56 | elnnz 9226 | . . . . . . . . 9 | |
57 | 45, 55, 56 | sylanbrc 415 | . . . . . . . 8 |
58 | 43, 57 | ffvelrnd 5636 | . . . . . . 7 |
59 | fvexg 5518 | . . . . . . 7 | |
60 | 42, 58, 59 | syl2anc 409 | . . . . . 6 |
61 | 0zd 9228 | . . . . . . 7 | |
62 | simplrl 531 | . . . . . . 7 | |
63 | zdclt 9293 | . . . . . . 7 DECID | |
64 | 61, 62, 63 | syl2anc 409 | . . . . . 6 DECID |
65 | 30, 60, 64 | ifcldadc 3556 | . . . . 5 |
66 | 0zd 9228 | . . . . . 6 | |
67 | zdceq 9291 | . . . . . 6 DECID | |
68 | 25, 66, 67 | syl2anc 409 | . . . . 5 DECID |
69 | 7, 65, 68 | ifcldadc 3556 | . . . 4 |
70 | 69 | ralrimivva 2553 | . . 3 |
71 | eqid 2171 | . . . 4 | |
72 | 71 | fnmpo 6185 | . . 3 |
73 | 70, 72 | syl 14 | . 2 |
74 | eqid 2171 | . . . 4 | |
75 | eqid 2171 | . . . 4 | |
76 | mulgfn.t | . . . 4 .g | |
77 | 31, 74, 75, 32, 76 | mulgfvalg 12836 | . . 3 |
78 | 77 | fneq1d 5290 | . 2 |
79 | 73, 78 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 DECID wdc 830 w3o 973 wceq 1349 wcel 2142 wral 2449 cvv 2731 cif 3527 csn 3584 class class class wbr 3990 cxp 4610 wfn 5195 wf 5196 cfv 5200 (class class class)co 5857 cmpo 5859 cr 7777 cc0 7778 c1 7779 clt 7958 cneg 8095 cn 8882 cz 9216 cseq 10405 cbs 12420 cplusg 12484 c0g 12618 cminusg 12731 .gcmg 12834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 610 ax-in2 611 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-13 2144 ax-14 2145 ax-ext 2153 ax-coll 4105 ax-sep 4108 ax-nul 4116 ax-pow 4161 ax-pr 4195 ax-un 4419 ax-setind 4522 ax-iinf 4573 ax-cnex 7869 ax-resscn 7870 ax-1cn 7871 ax-1re 7872 ax-icn 7873 ax-addcl 7874 ax-addrcl 7875 ax-mulcl 7876 ax-addcom 7878 ax-addass 7880 ax-distr 7882 ax-i2m1 7883 ax-0lt1 7884 ax-0id 7886 ax-rnegex 7887 ax-cnre 7889 ax-pre-ltirr 7890 ax-pre-ltwlin 7891 ax-pre-lttrn 7892 ax-pre-ltadd 7894 |
This theorem depends on definitions: df-bi 116 df-dc 831 df-3or 975 df-3an 976 df-tru 1352 df-fal 1355 df-nf 1455 df-sb 1757 df-eu 2023 df-mo 2024 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-ne 2342 df-nel 2437 df-ral 2454 df-rex 2455 df-reu 2456 df-rab 2458 df-v 2733 df-sbc 2957 df-csb 3051 df-dif 3124 df-un 3126 df-in 3128 df-ss 3135 df-nul 3416 df-if 3528 df-pw 3569 df-sn 3590 df-pr 3591 df-op 3593 df-uni 3798 df-int 3833 df-iun 3876 df-br 3991 df-opab 4052 df-mpt 4053 df-tr 4089 df-id 4279 df-iord 4352 df-on 4354 df-ilim 4355 df-suc 4357 df-iom 4576 df-xp 4618 df-rel 4619 df-cnv 4620 df-co 4621 df-dm 4622 df-rn 4623 df-res 4624 df-ima 4625 df-iota 5162 df-fun 5202 df-fn 5203 df-f 5204 df-f1 5205 df-fo 5206 df-f1o 5207 df-fv 5208 df-riota 5813 df-ov 5860 df-oprab 5861 df-mpo 5862 df-1st 6123 df-2nd 6124 df-recs 6288 df-frec 6374 df-pnf 7960 df-mnf 7961 df-xr 7962 df-ltxr 7963 df-le 7964 df-sub 8096 df-neg 8097 df-inn 8883 df-2 8941 df-n0 9140 df-z 9217 df-uz 9492 df-seqfrec 10406 df-ndx 12423 df-slot 12424 df-base 12426 df-plusg 12497 df-0g 12620 df-minusg 12734 df-mulg 12835 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |