ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgfng Unicode version

Theorem mulgfng 13661
Description: Functionality of the group multiple operation. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
mulgfn.b  |-  B  =  ( Base `  G
)
mulgfn.t  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
mulgfng  |-  ( G  e.  V  ->  .x.  Fn  ( ZZ  X.  B
) )

Proof of Theorem mulgfng
Dummy variables  u  v  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2811 . . . . . . 7  |-  ( G  e.  V  ->  G  e.  _V )
2 fn0g 13408 . . . . . . . 8  |-  0g  Fn  _V
3 funfvex 5644 . . . . . . . . 9  |-  ( ( Fun  0g  /\  G  e.  dom  0g )  -> 
( 0g `  G
)  e.  _V )
43funfni 5423 . . . . . . . 8  |-  ( ( 0g  Fn  _V  /\  G  e.  _V )  ->  ( 0g `  G
)  e.  _V )
52, 4mpan 424 . . . . . . 7  |-  ( G  e.  _V  ->  ( 0g `  G )  e. 
_V )
61, 5syl 14 . . . . . 6  |-  ( G  e.  V  ->  ( 0g `  G )  e. 
_V )
76ad2antrr 488 . . . . 5  |-  ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  n  =  0 )  ->  ( 0g `  G )  e. 
_V )
8 nnuz 9758 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
9 1zzd 9473 . . . . . . . . . 10  |-  ( ( G  e.  V  /\  x  e.  B )  ->  1  e.  ZZ )
10 fvconst2g 5853 . . . . . . . . . . . . 13  |-  ( ( x  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { x } ) `
 u )  =  x )
11 simpl 109 . . . . . . . . . . . . 13  |-  ( ( x  e.  B  /\  u  e.  NN )  ->  x  e.  B )
1210, 11eqeltrd 2306 . . . . . . . . . . . 12  |-  ( ( x  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { x } ) `
 u )  e.  B )
1312elexd 2813 . . . . . . . . . . 11  |-  ( ( x  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { x } ) `
 u )  e. 
_V )
1413adantll 476 . . . . . . . . . 10  |-  ( ( ( G  e.  V  /\  x  e.  B
)  /\  u  e.  NN )  ->  ( ( NN  X.  { x } ) `  u
)  e.  _V )
15 simprl 529 . . . . . . . . . . 11  |-  ( ( ( G  e.  V  /\  x  e.  B
)  /\  ( u  e.  _V  /\  v  e. 
_V ) )  ->  u  e.  _V )
16 plusgslid 13145 . . . . . . . . . . . . 13  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
1716slotex 13059 . . . . . . . . . . . 12  |-  ( G  e.  V  ->  ( +g  `  G )  e. 
_V )
1817ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( G  e.  V  /\  x  e.  B
)  /\  ( u  e.  _V  /\  v  e. 
_V ) )  -> 
( +g  `  G )  e.  _V )
19 simprr 531 . . . . . . . . . . 11  |-  ( ( ( G  e.  V  /\  x  e.  B
)  /\  ( u  e.  _V  /\  v  e. 
_V ) )  -> 
v  e.  _V )
20 ovexg 6035 . . . . . . . . . . 11  |-  ( ( u  e.  _V  /\  ( +g  `  G )  e.  _V  /\  v  e.  _V )  ->  (
u ( +g  `  G
) v )  e. 
_V )
2115, 18, 19, 20syl3anc 1271 . . . . . . . . . 10  |-  ( ( ( G  e.  V  /\  x  e.  B
)  /\  ( u  e.  _V  /\  v  e. 
_V ) )  -> 
( u ( +g  `  G ) v )  e.  _V )
228, 9, 14, 21seqf 10686 . . . . . . . . 9  |-  ( ( G  e.  V  /\  x  e.  B )  ->  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) : NN --> _V )
2322adantrl 478 . . . . . . . 8  |-  ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  ->  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { x }
) ) : NN --> _V )
2423ad2antrr 488 . . . . . . 7  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  0  <  n )  ->  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { x }
) ) : NN --> _V )
25 simprl 529 . . . . . . . . 9  |-  ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  ->  n  e.  ZZ )
2625ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  0  <  n )  ->  n  e.  ZZ )
27 simpr 110 . . . . . . . 8  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  0  <  n )  ->  0  <  n )
28 elnnz 9456 . . . . . . . 8  |-  ( n  e.  NN  <->  ( n  e.  ZZ  /\  0  < 
n ) )
2926, 27, 28sylanbrc 417 . . . . . . 7  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  0  <  n )  ->  n  e.  NN )
3024, 29ffvelcdmd 5771 . . . . . 6  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  0  <  n )  ->  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  n )  e.  _V )
31 mulgfn.b . . . . . . . . . 10  |-  B  =  ( Base `  G
)
32 eqid 2229 . . . . . . . . . 10  |-  ( invg `  G )  =  ( invg `  G )
3331, 32grpinvfng 13577 . . . . . . . . 9  |-  ( G  e.  V  ->  ( invg `  G )  Fn  B )
34 basfn 13091 . . . . . . . . . . . 12  |-  Base  Fn  _V
35 funfvex 5644 . . . . . . . . . . . . 13  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
3635funfni 5423 . . . . . . . . . . . 12  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
3734, 36mpan 424 . . . . . . . . . . 11  |-  ( G  e.  _V  ->  ( Base `  G )  e. 
_V )
3831, 37eqeltrid 2316 . . . . . . . . . 10  |-  ( G  e.  _V  ->  B  e.  _V )
391, 38syl 14 . . . . . . . . 9  |-  ( G  e.  V  ->  B  e.  _V )
40 fnex 5861 . . . . . . . . 9  |-  ( ( ( invg `  G )  Fn  B  /\  B  e.  _V )  ->  ( invg `  G )  e.  _V )
4133, 39, 40syl2anc 411 . . . . . . . 8  |-  ( G  e.  V  ->  ( invg `  G )  e.  _V )
4241ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  -.  0  <  n )  ->  ( invg `  G )  e.  _V )
4323ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  -.  0  <  n )  ->  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) : NN --> _V )
4425znegcld 9571 . . . . . . . . . 10  |-  ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  ->  -u n  e.  ZZ )
4544ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  -.  0  <  n )  ->  -u n  e.  ZZ )
46 simplr 528 . . . . . . . . . . 11  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  -.  0  <  n )  ->  -.  n  =  0 )
47 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  -.  0  <  n )  ->  -.  0  <  n )
48 ztri3or0 9488 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  (
n  <  0  \/  n  =  0  \/  0  <  n ) )
4925, 48syl 14 . . . . . . . . . . . 12  |-  ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  ->  ( n  <  0  \/  n  =  0  \/  0  < 
n ) )
5049ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  -.  0  <  n )  ->  (
n  <  0  \/  n  =  0  \/  0  <  n ) )
5146, 47, 50ecase23d 1384 . . . . . . . . . 10  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  -.  0  <  n )  ->  n  <  0 )
5225zred 9569 . . . . . . . . . . . 12  |-  ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  ->  n  e.  RR )
5352ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  -.  0  <  n )  ->  n  e.  RR )
5453lt0neg1d 8662 . . . . . . . . . 10  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  -.  0  <  n )  ->  (
n  <  0  <->  0  <  -u n ) )
5551, 54mpbid 147 . . . . . . . . 9  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  -.  0  <  n )  ->  0  <  -u n )
56 elnnz 9456 . . . . . . . . 9  |-  ( -u n  e.  NN  <->  ( -u n  e.  ZZ  /\  0  <  -u n ) )
5745, 55, 56sylanbrc 417 . . . . . . . 8  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  -.  0  <  n )  ->  -u n  e.  NN )
5843, 57ffvelcdmd 5771 . . . . . . 7  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  -.  0  <  n )  ->  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  -u n )  e.  _V )
59 fvexg 5646 . . . . . . 7  |-  ( ( ( invg `  G )  e.  _V  /\  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { x }
) ) `  -u n
)  e.  _V )  ->  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  -u n ) )  e. 
_V )
6042, 58, 59syl2anc 411 . . . . . 6  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  -.  0  <  n )  ->  (
( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  -u n ) )  e. 
_V )
61 0zd 9458 . . . . . . 7  |-  ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0 )  -> 
0  e.  ZZ )
62 simplrl 535 . . . . . . 7  |-  ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0 )  ->  n  e.  ZZ )
63 zdclt 9524 . . . . . . 7  |-  ( ( 0  e.  ZZ  /\  n  e.  ZZ )  -> DECID  0  <  n )
6461, 62, 63syl2anc 411 . . . . . 6  |-  ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0 )  -> DECID  0  <  n )
6530, 60, 64ifcldadc 3632 . . . . 5  |-  ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0 )  ->  if ( 0  <  n ,  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { x }
) ) `  n
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  -u n ) ) )  e.  _V )
66 0zd 9458 . . . . . 6  |-  ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  ->  0  e.  ZZ )
67 zdceq 9522 . . . . . 6  |-  ( ( n  e.  ZZ  /\  0  e.  ZZ )  -> DECID  n  =  0 )
6825, 66, 67syl2anc 411 . . . . 5  |-  ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  -> DECID  n  =  0
)
697, 65, 68ifcldadc 3632 . . . 4  |-  ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  ->  if (
n  =  0 ,  ( 0g `  G
) ,  if ( 0  <  n ,  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { x }
) ) `  n
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  -u n ) ) ) )  e.  _V )
7069ralrimivva 2612 . . 3  |-  ( G  e.  V  ->  A. n  e.  ZZ  A. x  e.  B  if ( n  =  0 ,  ( 0g `  G ) ,  if ( 0  <  n ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  n ) ,  ( ( invg `  G ) `
 (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { x }
) ) `  -u n
) ) ) )  e.  _V )
71 eqid 2229 . . . 4  |-  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  ( 0g `  G
) ,  if ( 0  <  n ,  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { x }
) ) `  n
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  -u n ) ) ) ) )  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  ( 0g `  G ) ,  if ( 0  <  n ,  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { x }
) ) `  n
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  -u n ) ) ) ) )
7271fnmpo 6348 . . 3  |-  ( A. n  e.  ZZ  A. x  e.  B  if (
n  =  0 ,  ( 0g `  G
) ,  if ( 0  <  n ,  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { x }
) ) `  n
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  -u n ) ) ) )  e.  _V  ->  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  ( 0g `  G ) ,  if ( 0  <  n ,  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { x }
) ) `  n
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  -u n ) ) ) ) )  Fn  ( ZZ  X.  B ) )
7370, 72syl 14 . 2  |-  ( G  e.  V  ->  (
n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  ( 0g `  G ) ,  if ( 0  <  n ,  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { x }
) ) `  n
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  -u n ) ) ) ) )  Fn  ( ZZ  X.  B ) )
74 eqid 2229 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
75 eqid 2229 . . . 4  |-  ( 0g
`  G )  =  ( 0g `  G
)
76 mulgfn.t . . . 4  |-  .x.  =  (.g
`  G )
7731, 74, 75, 32, 76mulgfvalg 13658 . . 3  |-  ( G  e.  V  ->  .x.  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  ( 0g
`  G ) ,  if ( 0  < 
n ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  n ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  -u n ) ) ) ) ) )
7877fneq1d 5411 . 2  |-  ( G  e.  V  ->  (  .x.  Fn  ( ZZ  X.  B )  <->  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  ( 0g `  G ) ,  if ( 0  <  n ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  n ) ,  ( ( invg `  G ) `
 (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { x }
) ) `  -u n
) ) ) ) )  Fn  ( ZZ 
X.  B ) ) )
7973, 78mpbird 167 1  |-  ( G  e.  V  ->  .x.  Fn  ( ZZ  X.  B
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 839    \/ w3o 1001    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799   ifcif 3602   {csn 3666   class class class wbr 4083    X. cxp 4717    Fn wfn 5313   -->wf 5314   ` cfv 5318  (class class class)co 6001    e. cmpo 6003   RRcr 7998   0cc0 7999   1c1 8000    < clt 8181   -ucneg 8318   NNcn 9110   ZZcz 9446    seqcseq 10669   Basecbs 13032   +g cplusg 13110   0gc0g 13289   invgcminusg 13534  .gcmg 13656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-2 9169  df-n0 9370  df-z 9447  df-uz 9723  df-seqfrec 10670  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-0g 13291  df-minusg 13537  df-mulg 13657
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator