ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgfng Unicode version

Theorem mulgfng 12838
Description: Functionality of the group multiple operation. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
mulgfn.b  |-  B  =  ( Base `  G
)
mulgfn.t  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
mulgfng  |-  ( G  e.  V  ->  .x.  Fn  ( ZZ  X.  B
) )

Proof of Theorem mulgfng
Dummy variables  u  v  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2742 . . . . . . 7  |-  ( G  e.  V  ->  G  e.  _V )
2 fn0g 12651 . . . . . . . 8  |-  0g  Fn  _V
3 funfvex 5516 . . . . . . . . 9  |-  ( ( Fun  0g  /\  G  e.  dom  0g )  -> 
( 0g `  G
)  e.  _V )
43funfni 5300 . . . . . . . 8  |-  ( ( 0g  Fn  _V  /\  G  e.  _V )  ->  ( 0g `  G
)  e.  _V )
52, 4mpan 422 . . . . . . 7  |-  ( G  e.  _V  ->  ( 0g `  G )  e. 
_V )
61, 5syl 14 . . . . . 6  |-  ( G  e.  V  ->  ( 0g `  G )  e. 
_V )
76ad2antrr 486 . . . . 5  |-  ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  n  =  0 )  ->  ( 0g `  G )  e. 
_V )
8 nnuz 9526 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
9 1zzd 9243 . . . . . . . . . 10  |-  ( ( G  e.  V  /\  x  e.  B )  ->  1  e.  ZZ )
10 fvconst2g 5714 . . . . . . . . . . . . 13  |-  ( ( x  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { x } ) `
 u )  =  x )
11 simpl 108 . . . . . . . . . . . . 13  |-  ( ( x  e.  B  /\  u  e.  NN )  ->  x  e.  B )
1210, 11eqeltrd 2248 . . . . . . . . . . . 12  |-  ( ( x  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { x } ) `
 u )  e.  B )
1312elexd 2744 . . . . . . . . . . 11  |-  ( ( x  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { x } ) `
 u )  e. 
_V )
1413adantll 474 . . . . . . . . . 10  |-  ( ( ( G  e.  V  /\  x  e.  B
)  /\  u  e.  NN )  ->  ( ( NN  X.  { x } ) `  u
)  e.  _V )
15 simprl 527 . . . . . . . . . . 11  |-  ( ( ( G  e.  V  /\  x  e.  B
)  /\  ( u  e.  _V  /\  v  e. 
_V ) )  ->  u  e.  _V )
16 plusgslid 12517 . . . . . . . . . . . . 13  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
1716slotex 12447 . . . . . . . . . . . 12  |-  ( G  e.  V  ->  ( +g  `  G )  e. 
_V )
1817ad2antrr 486 . . . . . . . . . . 11  |-  ( ( ( G  e.  V  /\  x  e.  B
)  /\  ( u  e.  _V  /\  v  e. 
_V ) )  -> 
( +g  `  G )  e.  _V )
19 simprr 528 . . . . . . . . . . 11  |-  ( ( ( G  e.  V  /\  x  e.  B
)  /\  ( u  e.  _V  /\  v  e. 
_V ) )  -> 
v  e.  _V )
20 ovexg 5891 . . . . . . . . . . 11  |-  ( ( u  e.  _V  /\  ( +g  `  G )  e.  _V  /\  v  e.  _V )  ->  (
u ( +g  `  G
) v )  e. 
_V )
2115, 18, 19, 20syl3anc 1234 . . . . . . . . . 10  |-  ( ( ( G  e.  V  /\  x  e.  B
)  /\  ( u  e.  _V  /\  v  e. 
_V ) )  -> 
( u ( +g  `  G ) v )  e.  _V )
228, 9, 14, 21seqf 10421 . . . . . . . . 9  |-  ( ( G  e.  V  /\  x  e.  B )  ->  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) : NN --> _V )
2322adantrl 476 . . . . . . . 8  |-  ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  ->  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { x }
) ) : NN --> _V )
2423ad2antrr 486 . . . . . . 7  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  0  <  n )  ->  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { x }
) ) : NN --> _V )
25 simprl 527 . . . . . . . . 9  |-  ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  ->  n  e.  ZZ )
2625ad2antrr 486 . . . . . . . 8  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  0  <  n )  ->  n  e.  ZZ )
27 simpr 109 . . . . . . . 8  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  0  <  n )  ->  0  <  n )
28 elnnz 9226 . . . . . . . 8  |-  ( n  e.  NN  <->  ( n  e.  ZZ  /\  0  < 
n ) )
2926, 27, 28sylanbrc 415 . . . . . . 7  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  0  <  n )  ->  n  e.  NN )
3024, 29ffvelrnd 5636 . . . . . 6  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  0  <  n )  ->  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  n )  e.  _V )
31 mulgfn.b . . . . . . . . . 10  |-  B  =  ( Base `  G
)
32 eqid 2171 . . . . . . . . . 10  |-  ( invg `  G )  =  ( invg `  G )
3331, 32grpinvfng 12769 . . . . . . . . 9  |-  ( G  e.  V  ->  ( invg `  G )  Fn  B )
34 basfn 12477 . . . . . . . . . . . 12  |-  Base  Fn  _V
35 funfvex 5516 . . . . . . . . . . . . 13  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
3635funfni 5300 . . . . . . . . . . . 12  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
3734, 36mpan 422 . . . . . . . . . . 11  |-  ( G  e.  _V  ->  ( Base `  G )  e. 
_V )
3831, 37eqeltrid 2258 . . . . . . . . . 10  |-  ( G  e.  _V  ->  B  e.  _V )
391, 38syl 14 . . . . . . . . 9  |-  ( G  e.  V  ->  B  e.  _V )
40 fnex 5722 . . . . . . . . 9  |-  ( ( ( invg `  G )  Fn  B  /\  B  e.  _V )  ->  ( invg `  G )  e.  _V )
4133, 39, 40syl2anc 409 . . . . . . . 8  |-  ( G  e.  V  ->  ( invg `  G )  e.  _V )
4241ad3antrrr 490 . . . . . . 7  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  -.  0  <  n )  ->  ( invg `  G )  e.  _V )
4323ad2antrr 486 . . . . . . . 8  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  -.  0  <  n )  ->  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) : NN --> _V )
4425znegcld 9340 . . . . . . . . . 10  |-  ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  ->  -u n  e.  ZZ )
4544ad2antrr 486 . . . . . . . . 9  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  -.  0  <  n )  ->  -u n  e.  ZZ )
46 simplr 526 . . . . . . . . . . 11  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  -.  0  <  n )  ->  -.  n  =  0 )
47 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  -.  0  <  n )  ->  -.  0  <  n )
48 ztri3or0 9258 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  (
n  <  0  \/  n  =  0  \/  0  <  n ) )
4925, 48syl 14 . . . . . . . . . . . 12  |-  ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  ->  ( n  <  0  \/  n  =  0  \/  0  < 
n ) )
5049ad2antrr 486 . . . . . . . . . . 11  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  -.  0  <  n )  ->  (
n  <  0  \/  n  =  0  \/  0  <  n ) )
5146, 47, 50ecase23d 1346 . . . . . . . . . 10  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  -.  0  <  n )  ->  n  <  0 )
5225zred 9338 . . . . . . . . . . . 12  |-  ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  ->  n  e.  RR )
5352ad2antrr 486 . . . . . . . . . . 11  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  -.  0  <  n )  ->  n  e.  RR )
5453lt0neg1d 8438 . . . . . . . . . 10  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  -.  0  <  n )  ->  (
n  <  0  <->  0  <  -u n ) )
5551, 54mpbid 146 . . . . . . . . 9  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  -.  0  <  n )  ->  0  <  -u n )
56 elnnz 9226 . . . . . . . . 9  |-  ( -u n  e.  NN  <->  ( -u n  e.  ZZ  /\  0  <  -u n ) )
5745, 55, 56sylanbrc 415 . . . . . . . 8  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  -.  0  <  n )  ->  -u n  e.  NN )
5843, 57ffvelrnd 5636 . . . . . . 7  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  -.  0  <  n )  ->  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  -u n )  e.  _V )
59 fvexg 5518 . . . . . . 7  |-  ( ( ( invg `  G )  e.  _V  /\  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { x }
) ) `  -u n
)  e.  _V )  ->  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  -u n ) )  e. 
_V )
6042, 58, 59syl2anc 409 . . . . . 6  |-  ( ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0
)  /\  -.  0  <  n )  ->  (
( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  -u n ) )  e. 
_V )
61 0zd 9228 . . . . . . 7  |-  ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0 )  -> 
0  e.  ZZ )
62 simplrl 531 . . . . . . 7  |-  ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0 )  ->  n  e.  ZZ )
63 zdclt 9293 . . . . . . 7  |-  ( ( 0  e.  ZZ  /\  n  e.  ZZ )  -> DECID  0  <  n )
6461, 62, 63syl2anc 409 . . . . . 6  |-  ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0 )  -> DECID  0  <  n )
6530, 60, 64ifcldadc 3556 . . . . 5  |-  ( ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  /\  -.  n  =  0 )  ->  if ( 0  <  n ,  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { x }
) ) `  n
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  -u n ) ) )  e.  _V )
66 0zd 9228 . . . . . 6  |-  ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  ->  0  e.  ZZ )
67 zdceq 9291 . . . . . 6  |-  ( ( n  e.  ZZ  /\  0  e.  ZZ )  -> DECID  n  =  0 )
6825, 66, 67syl2anc 409 . . . . 5  |-  ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  -> DECID  n  =  0
)
697, 65, 68ifcldadc 3556 . . . 4  |-  ( ( G  e.  V  /\  ( n  e.  ZZ  /\  x  e.  B ) )  ->  if (
n  =  0 ,  ( 0g `  G
) ,  if ( 0  <  n ,  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { x }
) ) `  n
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  -u n ) ) ) )  e.  _V )
7069ralrimivva 2553 . . 3  |-  ( G  e.  V  ->  A. n  e.  ZZ  A. x  e.  B  if ( n  =  0 ,  ( 0g `  G ) ,  if ( 0  <  n ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  n ) ,  ( ( invg `  G ) `
 (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { x }
) ) `  -u n
) ) ) )  e.  _V )
71 eqid 2171 . . . 4  |-  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  ( 0g `  G
) ,  if ( 0  <  n ,  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { x }
) ) `  n
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  -u n ) ) ) ) )  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  ( 0g `  G ) ,  if ( 0  <  n ,  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { x }
) ) `  n
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  -u n ) ) ) ) )
7271fnmpo 6185 . . 3  |-  ( A. n  e.  ZZ  A. x  e.  B  if (
n  =  0 ,  ( 0g `  G
) ,  if ( 0  <  n ,  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { x }
) ) `  n
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  -u n ) ) ) )  e.  _V  ->  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  ( 0g `  G ) ,  if ( 0  <  n ,  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { x }
) ) `  n
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  -u n ) ) ) ) )  Fn  ( ZZ  X.  B ) )
7370, 72syl 14 . 2  |-  ( G  e.  V  ->  (
n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  ( 0g `  G ) ,  if ( 0  <  n ,  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { x }
) ) `  n
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  -u n ) ) ) ) )  Fn  ( ZZ  X.  B ) )
74 eqid 2171 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
75 eqid 2171 . . . 4  |-  ( 0g
`  G )  =  ( 0g `  G
)
76 mulgfn.t . . . 4  |-  .x.  =  (.g
`  G )
7731, 74, 75, 32, 76mulgfvalg 12836 . . 3  |-  ( G  e.  V  ->  .x.  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  ( 0g
`  G ) ,  if ( 0  < 
n ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  n ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  -u n ) ) ) ) ) )
7877fneq1d 5290 . 2  |-  ( G  e.  V  ->  (  .x.  Fn  ( ZZ  X.  B )  <->  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  ( 0g `  G ) ,  if ( 0  <  n ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  n ) ,  ( ( invg `  G ) `
 (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { x }
) ) `  -u n
) ) ) ) )  Fn  ( ZZ 
X.  B ) ) )
7973, 78mpbird 166 1  |-  ( G  e.  V  ->  .x.  Fn  ( ZZ  X.  B
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103  DECID wdc 830    \/ w3o 973    = wceq 1349    e. wcel 2142   A.wral 2449   _Vcvv 2731   ifcif 3527   {csn 3584   class class class wbr 3990    X. cxp 4610    Fn wfn 5195   -->wf 5196   ` cfv 5200  (class class class)co 5857    e. cmpo 5859   RRcr 7777   0cc0 7778   1c1 7779    < clt 7958   -ucneg 8095   NNcn 8882   ZZcz 9216    seqcseq 10405   Basecbs 12420   +g cplusg 12484   0gc0g 12618   invgcminusg 12731  .gcmg 12834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 610  ax-in2 611  ax-io 705  ax-5 1441  ax-7 1442  ax-gen 1443  ax-ie1 1487  ax-ie2 1488  ax-8 1498  ax-10 1499  ax-11 1500  ax-i12 1501  ax-bndl 1503  ax-4 1504  ax-17 1520  ax-i9 1524  ax-ial 1528  ax-i5r 1529  ax-13 2144  ax-14 2145  ax-ext 2153  ax-coll 4105  ax-sep 4108  ax-nul 4116  ax-pow 4161  ax-pr 4195  ax-un 4419  ax-setind 4522  ax-iinf 4573  ax-cnex 7869  ax-resscn 7870  ax-1cn 7871  ax-1re 7872  ax-icn 7873  ax-addcl 7874  ax-addrcl 7875  ax-mulcl 7876  ax-addcom 7878  ax-addass 7880  ax-distr 7882  ax-i2m1 7883  ax-0lt1 7884  ax-0id 7886  ax-rnegex 7887  ax-cnre 7889  ax-pre-ltirr 7890  ax-pre-ltwlin 7891  ax-pre-lttrn 7892  ax-pre-ltadd 7894
This theorem depends on definitions:  df-bi 116  df-dc 831  df-3or 975  df-3an 976  df-tru 1352  df-fal 1355  df-nf 1455  df-sb 1757  df-eu 2023  df-mo 2024  df-clab 2158  df-cleq 2164  df-clel 2167  df-nfc 2302  df-ne 2342  df-nel 2437  df-ral 2454  df-rex 2455  df-reu 2456  df-rab 2458  df-v 2733  df-sbc 2957  df-csb 3051  df-dif 3124  df-un 3126  df-in 3128  df-ss 3135  df-nul 3416  df-if 3528  df-pw 3569  df-sn 3590  df-pr 3591  df-op 3593  df-uni 3798  df-int 3833  df-iun 3876  df-br 3991  df-opab 4052  df-mpt 4053  df-tr 4089  df-id 4279  df-iord 4352  df-on 4354  df-ilim 4355  df-suc 4357  df-iom 4576  df-xp 4618  df-rel 4619  df-cnv 4620  df-co 4621  df-dm 4622  df-rn 4623  df-res 4624  df-ima 4625  df-iota 5162  df-fun 5202  df-fn 5203  df-f 5204  df-f1 5205  df-fo 5206  df-f1o 5207  df-fv 5208  df-riota 5813  df-ov 5860  df-oprab 5861  df-mpo 5862  df-1st 6123  df-2nd 6124  df-recs 6288  df-frec 6374  df-pnf 7960  df-mnf 7961  df-xr 7962  df-ltxr 7963  df-le 7964  df-sub 8096  df-neg 8097  df-inn 8883  df-2 8941  df-n0 9140  df-z 9217  df-uz 9492  df-seqfrec 10406  df-ndx 12423  df-slot 12424  df-base 12426  df-plusg 12497  df-0g 12620  df-minusg 12734  df-mulg 12835
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator