| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgval | Unicode version | ||
| Description: Value of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgval.b |
|
| mulgval.p |
|
| mulgval.o |
|
| mulgval.i |
|
| mulgval.t |
|
| mulgval.s |
|
| Ref | Expression |
|---|---|
| mulgval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgval.b |
. . . 4
| |
| 2 | 1 | basmex 13087 |
. . 3
|
| 3 | 2 | adantl 277 |
. 2
|
| 4 | mulgval.p |
. . . . 5
| |
| 5 | mulgval.o |
. . . . 5
| |
| 6 | mulgval.i |
. . . . 5
| |
| 7 | mulgval.t |
. . . . 5
| |
| 8 | 1, 4, 5, 6, 7 | mulgfvalg 13653 |
. . . 4
|
| 9 | 8 | adantl 277 |
. . 3
|
| 10 | simpl 109 |
. . . . . 6
| |
| 11 | 10 | eqeq1d 2238 |
. . . . 5
|
| 12 | 10 | breq2d 4094 |
. . . . . 6
|
| 13 | simpr 110 |
. . . . . . . . . . 11
| |
| 14 | 13 | sneqd 3679 |
. . . . . . . . . 10
|
| 15 | 14 | xpeq2d 4742 |
. . . . . . . . 9
|
| 16 | 15 | seqeq3d 10672 |
. . . . . . . 8
|
| 17 | mulgval.s |
. . . . . . . 8
| |
| 18 | 16, 17 | eqtr4di 2280 |
. . . . . . 7
|
| 19 | 18, 10 | fveq12d 5633 |
. . . . . 6
|
| 20 | 10 | negeqd 8337 |
. . . . . . . 8
|
| 21 | 18, 20 | fveq12d 5633 |
. . . . . . 7
|
| 22 | 21 | fveq2d 5630 |
. . . . . 6
|
| 23 | 12, 19, 22 | ifbieq12d 3629 |
. . . . 5
|
| 24 | 11, 23 | ifbieq2d 3627 |
. . . 4
|
| 25 | 24 | adantl 277 |
. . 3
|
| 26 | simpll 527 |
. . 3
| |
| 27 | simplr 528 |
. . 3
| |
| 28 | fn0g 13403 |
. . . . . . 7
| |
| 29 | funfvex 5643 |
. . . . . . . 8
| |
| 30 | 29 | funfni 5422 |
. . . . . . 7
|
| 31 | 28, 30 | mpan 424 |
. . . . . 6
|
| 32 | 5, 31 | eqeltrid 2316 |
. . . . 5
|
| 33 | 32 | ad2antlr 489 |
. . . 4
|
| 34 | nnuz 9754 |
. . . . . . . . 9
| |
| 35 | 1zzd 9469 |
. . . . . . . . 9
| |
| 36 | fvconst2g 5852 |
. . . . . . . . . . . 12
| |
| 37 | simpl 109 |
. . . . . . . . . . . 12
| |
| 38 | 36, 37 | eqeltrd 2306 |
. . . . . . . . . . 11
|
| 39 | 38 | elexd 2813 |
. . . . . . . . . 10
|
| 40 | 39 | adantlr 477 |
. . . . . . . . 9
|
| 41 | simprl 529 |
. . . . . . . . . 10
| |
| 42 | plusgslid 13140 |
. . . . . . . . . . . . 13
| |
| 43 | 42 | slotex 13054 |
. . . . . . . . . . . 12
|
| 44 | 4, 43 | eqeltrid 2316 |
. . . . . . . . . . 11
|
| 45 | 44 | ad2antlr 489 |
. . . . . . . . . 10
|
| 46 | simprr 531 |
. . . . . . . . . 10
| |
| 47 | ovexg 6034 |
. . . . . . . . . 10
| |
| 48 | 41, 45, 46, 47 | syl3anc 1271 |
. . . . . . . . 9
|
| 49 | 34, 35, 40, 48 | seqf 10681 |
. . . . . . . 8
|
| 50 | 17 | feq1i 5465 |
. . . . . . . 8
|
| 51 | 49, 50 | sylibr 134 |
. . . . . . 7
|
| 52 | 51 | ad5ant23 522 |
. . . . . 6
|
| 53 | simp-4l 541 |
. . . . . . 7
| |
| 54 | simpr 110 |
. . . . . . 7
| |
| 55 | elnnz 9452 |
. . . . . . 7
| |
| 56 | 53, 54, 55 | sylanbrc 417 |
. . . . . 6
|
| 57 | 52, 56 | ffvelcdmd 5770 |
. . . . 5
|
| 58 | 1, 6 | grpinvfng 13572 |
. . . . . . . 8
|
| 59 | basfn 13086 |
. . . . . . . . . 10
| |
| 60 | funfvex 5643 |
. . . . . . . . . . 11
| |
| 61 | 60 | funfni 5422 |
. . . . . . . . . 10
|
| 62 | 59, 61 | mpan 424 |
. . . . . . . . 9
|
| 63 | 1, 62 | eqeltrid 2316 |
. . . . . . . 8
|
| 64 | fnex 5860 |
. . . . . . . 8
| |
| 65 | 58, 63, 64 | syl2anc 411 |
. . . . . . 7
|
| 66 | 65 | ad3antlr 493 |
. . . . . 6
|
| 67 | 51 | ad5ant23 522 |
. . . . . . 7
|
| 68 | znegcl 9473 |
. . . . . . . . 9
| |
| 69 | 68 | ad4antr 494 |
. . . . . . . 8
|
| 70 | simplr 528 |
. . . . . . . . . 10
| |
| 71 | simpr 110 |
. . . . . . . . . 10
| |
| 72 | ztri3or0 9484 |
. . . . . . . . . . 11
| |
| 73 | 72 | ad4antr 494 |
. . . . . . . . . 10
|
| 74 | 70, 71, 73 | ecase23d 1384 |
. . . . . . . . 9
|
| 75 | zre 9446 |
. . . . . . . . . . 11
| |
| 76 | 75 | ad4antr 494 |
. . . . . . . . . 10
|
| 77 | 76 | lt0neg1d 8658 |
. . . . . . . . 9
|
| 78 | 74, 77 | mpbid 147 |
. . . . . . . 8
|
| 79 | elnnz 9452 |
. . . . . . . 8
| |
| 80 | 69, 78, 79 | sylanbrc 417 |
. . . . . . 7
|
| 81 | 67, 80 | ffvelcdmd 5770 |
. . . . . 6
|
| 82 | fvexg 5645 |
. . . . . 6
| |
| 83 | 66, 81, 82 | syl2anc 411 |
. . . . 5
|
| 84 | 0zd 9454 |
. . . . . 6
| |
| 85 | simplll 533 |
. . . . . 6
| |
| 86 | zdclt 9520 |
. . . . . 6
| |
| 87 | 84, 85, 86 | syl2anc 411 |
. . . . 5
|
| 88 | 57, 83, 87 | ifcldadc 3632 |
. . . 4
|
| 89 | 0zd 9454 |
. . . . 5
| |
| 90 | zdceq 9518 |
. . . . 5
| |
| 91 | 26, 89, 90 | syl2anc 411 |
. . . 4
|
| 92 | 33, 88, 91 | ifcldadc 3632 |
. . 3
|
| 93 | 9, 25, 26, 27, 92 | ovmpod 6131 |
. 2
|
| 94 | 3, 93 | mpdan 421 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-2 9165 df-n0 9366 df-z 9443 df-uz 9719 df-seqfrec 10665 df-ndx 13030 df-slot 13031 df-base 13033 df-plusg 13118 df-0g 13286 df-minusg 13532 df-mulg 13652 |
| This theorem is referenced by: mulg0 13657 mulgnn 13658 mulgnegnn 13664 subgmulg 13720 |
| Copyright terms: Public domain | W3C validator |