| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgval | Unicode version | ||
| Description: Value of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgval.b |
|
| mulgval.p |
|
| mulgval.o |
|
| mulgval.i |
|
| mulgval.t |
|
| mulgval.s |
|
| Ref | Expression |
|---|---|
| mulgval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgval.b |
. . . 4
| |
| 2 | 1 | basmex 12833 |
. . 3
|
| 3 | 2 | adantl 277 |
. 2
|
| 4 | mulgval.p |
. . . . 5
| |
| 5 | mulgval.o |
. . . . 5
| |
| 6 | mulgval.i |
. . . . 5
| |
| 7 | mulgval.t |
. . . . 5
| |
| 8 | 1, 4, 5, 6, 7 | mulgfvalg 13399 |
. . . 4
|
| 9 | 8 | adantl 277 |
. . 3
|
| 10 | simpl 109 |
. . . . . 6
| |
| 11 | 10 | eqeq1d 2213 |
. . . . 5
|
| 12 | 10 | breq2d 4055 |
. . . . . 6
|
| 13 | simpr 110 |
. . . . . . . . . . 11
| |
| 14 | 13 | sneqd 3645 |
. . . . . . . . . 10
|
| 15 | 14 | xpeq2d 4698 |
. . . . . . . . 9
|
| 16 | 15 | seqeq3d 10598 |
. . . . . . . 8
|
| 17 | mulgval.s |
. . . . . . . 8
| |
| 18 | 16, 17 | eqtr4di 2255 |
. . . . . . 7
|
| 19 | 18, 10 | fveq12d 5582 |
. . . . . 6
|
| 20 | 10 | negeqd 8266 |
. . . . . . . 8
|
| 21 | 18, 20 | fveq12d 5582 |
. . . . . . 7
|
| 22 | 21 | fveq2d 5579 |
. . . . . 6
|
| 23 | 12, 19, 22 | ifbieq12d 3596 |
. . . . 5
|
| 24 | 11, 23 | ifbieq2d 3594 |
. . . 4
|
| 25 | 24 | adantl 277 |
. . 3
|
| 26 | simpll 527 |
. . 3
| |
| 27 | simplr 528 |
. . 3
| |
| 28 | fn0g 13149 |
. . . . . . 7
| |
| 29 | funfvex 5592 |
. . . . . . . 8
| |
| 30 | 29 | funfni 5375 |
. . . . . . 7
|
| 31 | 28, 30 | mpan 424 |
. . . . . 6
|
| 32 | 5, 31 | eqeltrid 2291 |
. . . . 5
|
| 33 | 32 | ad2antlr 489 |
. . . 4
|
| 34 | nnuz 9683 |
. . . . . . . . 9
| |
| 35 | 1zzd 9398 |
. . . . . . . . 9
| |
| 36 | fvconst2g 5797 |
. . . . . . . . . . . 12
| |
| 37 | simpl 109 |
. . . . . . . . . . . 12
| |
| 38 | 36, 37 | eqeltrd 2281 |
. . . . . . . . . . 11
|
| 39 | 38 | elexd 2784 |
. . . . . . . . . 10
|
| 40 | 39 | adantlr 477 |
. . . . . . . . 9
|
| 41 | simprl 529 |
. . . . . . . . . 10
| |
| 42 | plusgslid 12886 |
. . . . . . . . . . . . 13
| |
| 43 | 42 | slotex 12801 |
. . . . . . . . . . . 12
|
| 44 | 4, 43 | eqeltrid 2291 |
. . . . . . . . . . 11
|
| 45 | 44 | ad2antlr 489 |
. . . . . . . . . 10
|
| 46 | simprr 531 |
. . . . . . . . . 10
| |
| 47 | ovexg 5977 |
. . . . . . . . . 10
| |
| 48 | 41, 45, 46, 47 | syl3anc 1249 |
. . . . . . . . 9
|
| 49 | 34, 35, 40, 48 | seqf 10607 |
. . . . . . . 8
|
| 50 | 17 | feq1i 5417 |
. . . . . . . 8
|
| 51 | 49, 50 | sylibr 134 |
. . . . . . 7
|
| 52 | 51 | ad5ant23 522 |
. . . . . 6
|
| 53 | simp-4l 541 |
. . . . . . 7
| |
| 54 | simpr 110 |
. . . . . . 7
| |
| 55 | elnnz 9381 |
. . . . . . 7
| |
| 56 | 53, 54, 55 | sylanbrc 417 |
. . . . . 6
|
| 57 | 52, 56 | ffvelcdmd 5715 |
. . . . 5
|
| 58 | 1, 6 | grpinvfng 13318 |
. . . . . . . 8
|
| 59 | basfn 12832 |
. . . . . . . . . 10
| |
| 60 | funfvex 5592 |
. . . . . . . . . . 11
| |
| 61 | 60 | funfni 5375 |
. . . . . . . . . 10
|
| 62 | 59, 61 | mpan 424 |
. . . . . . . . 9
|
| 63 | 1, 62 | eqeltrid 2291 |
. . . . . . . 8
|
| 64 | fnex 5805 |
. . . . . . . 8
| |
| 65 | 58, 63, 64 | syl2anc 411 |
. . . . . . 7
|
| 66 | 65 | ad3antlr 493 |
. . . . . 6
|
| 67 | 51 | ad5ant23 522 |
. . . . . . 7
|
| 68 | znegcl 9402 |
. . . . . . . . 9
| |
| 69 | 68 | ad4antr 494 |
. . . . . . . 8
|
| 70 | simplr 528 |
. . . . . . . . . 10
| |
| 71 | simpr 110 |
. . . . . . . . . 10
| |
| 72 | ztri3or0 9413 |
. . . . . . . . . . 11
| |
| 73 | 72 | ad4antr 494 |
. . . . . . . . . 10
|
| 74 | 70, 71, 73 | ecase23d 1362 |
. . . . . . . . 9
|
| 75 | zre 9375 |
. . . . . . . . . . 11
| |
| 76 | 75 | ad4antr 494 |
. . . . . . . . . 10
|
| 77 | 76 | lt0neg1d 8587 |
. . . . . . . . 9
|
| 78 | 74, 77 | mpbid 147 |
. . . . . . . 8
|
| 79 | elnnz 9381 |
. . . . . . . 8
| |
| 80 | 69, 78, 79 | sylanbrc 417 |
. . . . . . 7
|
| 81 | 67, 80 | ffvelcdmd 5715 |
. . . . . 6
|
| 82 | fvexg 5594 |
. . . . . 6
| |
| 83 | 66, 81, 82 | syl2anc 411 |
. . . . 5
|
| 84 | 0zd 9383 |
. . . . . 6
| |
| 85 | simplll 533 |
. . . . . 6
| |
| 86 | zdclt 9449 |
. . . . . 6
| |
| 87 | 84, 85, 86 | syl2anc 411 |
. . . . 5
|
| 88 | 57, 83, 87 | ifcldadc 3599 |
. . . 4
|
| 89 | 0zd 9383 |
. . . . 5
| |
| 90 | zdceq 9447 |
. . . . 5
| |
| 91 | 26, 89, 90 | syl2anc 411 |
. . . 4
|
| 92 | 33, 88, 91 | ifcldadc 3599 |
. . 3
|
| 93 | 9, 25, 26, 27, 92 | ovmpod 6072 |
. 2
|
| 94 | 3, 93 | mpdan 421 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-frec 6476 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-2 9094 df-n0 9295 df-z 9372 df-uz 9648 df-seqfrec 10591 df-ndx 12777 df-slot 12778 df-base 12780 df-plusg 12864 df-0g 13032 df-minusg 13278 df-mulg 13398 |
| This theorem is referenced by: mulg0 13403 mulgnn 13404 mulgnegnn 13410 subgmulg 13466 |
| Copyright terms: Public domain | W3C validator |