ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgval Unicode version

Theorem mulgval 13654
Description: Value of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgval.b  |-  B  =  ( Base `  G
)
mulgval.p  |-  .+  =  ( +g  `  G )
mulgval.o  |-  .0.  =  ( 0g `  G )
mulgval.i  |-  I  =  ( invg `  G )
mulgval.t  |-  .x.  =  (.g
`  G )
mulgval.s  |-  S  =  seq 1 (  .+  ,  ( NN  X.  { X } ) )
Assertion
Ref Expression
mulgval  |-  ( ( N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X
)  =  if ( N  =  0 ,  .0.  ,  if ( 0  <  N , 
( S `  N
) ,  ( I `
 ( S `  -u N ) ) ) ) )

Proof of Theorem mulgval
Dummy variables  x  n  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgval.b . . . 4  |-  B  =  ( Base `  G
)
21basmex 13087 . . 3  |-  ( X  e.  B  ->  G  e.  _V )
32adantl 277 . 2  |-  ( ( N  e.  ZZ  /\  X  e.  B )  ->  G  e.  _V )
4 mulgval.p . . . . 5  |-  .+  =  ( +g  `  G )
5 mulgval.o . . . . 5  |-  .0.  =  ( 0g `  G )
6 mulgval.i . . . . 5  |-  I  =  ( invg `  G )
7 mulgval.t . . . . 5  |-  .x.  =  (.g
`  G )
81, 4, 5, 6, 7mulgfvalg 13653 . . . 4  |-  ( G  e.  _V  ->  .x.  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) ) )
98adantl 277 . . 3  |-  ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  ->  .x.  =  (
n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) ) )
10 simpl 109 . . . . . 6  |-  ( ( n  =  N  /\  x  =  X )  ->  n  =  N )
1110eqeq1d 2238 . . . . 5  |-  ( ( n  =  N  /\  x  =  X )  ->  ( n  =  0  <-> 
N  =  0 ) )
1210breq2d 4094 . . . . . 6  |-  ( ( n  =  N  /\  x  =  X )  ->  ( 0  <  n  <->  0  <  N ) )
13 simpr 110 . . . . . . . . . . 11  |-  ( ( n  =  N  /\  x  =  X )  ->  x  =  X )
1413sneqd 3679 . . . . . . . . . 10  |-  ( ( n  =  N  /\  x  =  X )  ->  { x }  =  { X } )
1514xpeq2d 4742 . . . . . . . . 9  |-  ( ( n  =  N  /\  x  =  X )  ->  ( NN  X.  {
x } )  =  ( NN  X.  { X } ) )
1615seqeq3d 10672 . . . . . . . 8  |-  ( ( n  =  N  /\  x  =  X )  ->  seq 1 (  .+  ,  ( NN  X.  { x } ) )  =  seq 1
(  .+  ,  ( NN  X.  { X }
) ) )
17 mulgval.s . . . . . . . 8  |-  S  =  seq 1 (  .+  ,  ( NN  X.  { X } ) )
1816, 17eqtr4di 2280 . . . . . . 7  |-  ( ( n  =  N  /\  x  =  X )  ->  seq 1 (  .+  ,  ( NN  X.  { x } ) )  =  S )
1918, 10fveq12d 5633 . . . . . 6  |-  ( ( n  =  N  /\  x  =  X )  ->  (  seq 1 ( 
.+  ,  ( NN 
X.  { x }
) ) `  n
)  =  ( S `
 N ) )
2010negeqd 8337 . . . . . . . 8  |-  ( ( n  =  N  /\  x  =  X )  -> 
-u n  =  -u N )
2118, 20fveq12d 5633 . . . . . . 7  |-  ( ( n  =  N  /\  x  =  X )  ->  (  seq 1 ( 
.+  ,  ( NN 
X.  { x }
) ) `  -u n
)  =  ( S `
 -u N ) )
2221fveq2d 5630 . . . . . 6  |-  ( ( n  =  N  /\  x  =  X )  ->  ( I `  (  seq 1 (  .+  , 
( NN  X.  {
x } ) ) `
 -u n ) )  =  ( I `  ( S `  -u N
) ) )
2312, 19, 22ifbieq12d 3629 . . . . 5  |-  ( ( n  =  N  /\  x  =  X )  ->  if ( 0  < 
n ,  (  seq 1 (  .+  , 
( NN  X.  {
x } ) ) `
 n ) ,  ( I `  (  seq 1 (  .+  , 
( NN  X.  {
x } ) ) `
 -u n ) ) )  =  if ( 0  <  N , 
( S `  N
) ,  ( I `
 ( S `  -u N ) ) ) )
2411, 23ifbieq2d 3627 . . . 4  |-  ( ( n  =  N  /\  x  =  X )  ->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) )  =  if ( N  =  0 ,  .0.  ,  if ( 0  < 
N ,  ( S `
 N ) ,  ( I `  ( S `  -u N ) ) ) ) )
2524adantl 277 . . 3  |-  ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  (
n  =  N  /\  x  =  X )
)  ->  if (
n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1 ( 
.+  ,  ( NN 
X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) )  =  if ( N  =  0 ,  .0.  ,  if ( 0  < 
N ,  ( S `
 N ) ,  ( I `  ( S `  -u N ) ) ) ) )
26 simpll 527 . . 3  |-  ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  ->  N  e.  ZZ )
27 simplr 528 . . 3  |-  ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  ->  X  e.  B
)
28 fn0g 13403 . . . . . . 7  |-  0g  Fn  _V
29 funfvex 5643 . . . . . . . 8  |-  ( ( Fun  0g  /\  G  e.  dom  0g )  -> 
( 0g `  G
)  e.  _V )
3029funfni 5422 . . . . . . 7  |-  ( ( 0g  Fn  _V  /\  G  e.  _V )  ->  ( 0g `  G
)  e.  _V )
3128, 30mpan 424 . . . . . 6  |-  ( G  e.  _V  ->  ( 0g `  G )  e. 
_V )
325, 31eqeltrid 2316 . . . . 5  |-  ( G  e.  _V  ->  .0.  e.  _V )
3332ad2antlr 489 . . . 4  |-  ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  N  =  0 )  ->  .0.  e.  _V )
34 nnuz 9754 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
35 1zzd 9469 . . . . . . . . 9  |-  ( ( X  e.  B  /\  G  e.  _V )  ->  1  e.  ZZ )
36 fvconst2g 5852 . . . . . . . . . . . 12  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  =  X )
37 simpl 109 . . . . . . . . . . . 12  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  X  e.  B )
3836, 37eqeltrd 2306 . . . . . . . . . . 11  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  e.  B
)
3938elexd 2813 . . . . . . . . . 10  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  e.  _V )
4039adantlr 477 . . . . . . . . 9  |-  ( ( ( X  e.  B  /\  G  e.  _V )  /\  u  e.  NN )  ->  ( ( NN 
X.  { X }
) `  u )  e.  _V )
41 simprl 529 . . . . . . . . . 10  |-  ( ( ( X  e.  B  /\  G  e.  _V )  /\  ( u  e. 
_V  /\  v  e.  _V ) )  ->  u  e.  _V )
42 plusgslid 13140 . . . . . . . . . . . . 13  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
4342slotex 13054 . . . . . . . . . . . 12  |-  ( G  e.  _V  ->  ( +g  `  G )  e. 
_V )
444, 43eqeltrid 2316 . . . . . . . . . . 11  |-  ( G  e.  _V  ->  .+  e.  _V )
4544ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( X  e.  B  /\  G  e.  _V )  /\  ( u  e. 
_V  /\  v  e.  _V ) )  ->  .+  e.  _V )
46 simprr 531 . . . . . . . . . 10  |-  ( ( ( X  e.  B  /\  G  e.  _V )  /\  ( u  e. 
_V  /\  v  e.  _V ) )  ->  v  e.  _V )
47 ovexg 6034 . . . . . . . . . 10  |-  ( ( u  e.  _V  /\  .+  e.  _V  /\  v  e.  _V )  ->  (
u  .+  v )  e.  _V )
4841, 45, 46, 47syl3anc 1271 . . . . . . . . 9  |-  ( ( ( X  e.  B  /\  G  e.  _V )  /\  ( u  e. 
_V  /\  v  e.  _V ) )  ->  (
u  .+  v )  e.  _V )
4934, 35, 40, 48seqf 10681 . . . . . . . 8  |-  ( ( X  e.  B  /\  G  e.  _V )  ->  seq 1 (  .+  ,  ( NN  X.  { X } ) ) : NN --> _V )
5017feq1i 5465 . . . . . . . 8  |-  ( S : NN --> _V  <->  seq 1
(  .+  ,  ( NN  X.  { X }
) ) : NN --> _V )
5149, 50sylibr 134 . . . . . . 7  |-  ( ( X  e.  B  /\  G  e.  _V )  ->  S : NN --> _V )
5251ad5ant23 522 . . . . . 6  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  0  <  N
)  ->  S : NN
--> _V )
53 simp-4l 541 . . . . . . 7  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  0  <  N
)  ->  N  e.  ZZ )
54 simpr 110 . . . . . . 7  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  0  <  N
)  ->  0  <  N )
55 elnnz 9452 . . . . . . 7  |-  ( N  e.  NN  <->  ( N  e.  ZZ  /\  0  < 
N ) )
5653, 54, 55sylanbrc 417 . . . . . 6  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  0  <  N
)  ->  N  e.  NN )
5752, 56ffvelcdmd 5770 . . . . 5  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  0  <  N
)  ->  ( S `  N )  e.  _V )
581, 6grpinvfng 13572 . . . . . . . 8  |-  ( G  e.  _V  ->  I  Fn  B )
59 basfn 13086 . . . . . . . . . 10  |-  Base  Fn  _V
60 funfvex 5643 . . . . . . . . . . 11  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
6160funfni 5422 . . . . . . . . . 10  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
6259, 61mpan 424 . . . . . . . . 9  |-  ( G  e.  _V  ->  ( Base `  G )  e. 
_V )
631, 62eqeltrid 2316 . . . . . . . 8  |-  ( G  e.  _V  ->  B  e.  _V )
64 fnex 5860 . . . . . . . 8  |-  ( ( I  Fn  B  /\  B  e.  _V )  ->  I  e.  _V )
6558, 63, 64syl2anc 411 . . . . . . 7  |-  ( G  e.  _V  ->  I  e.  _V )
6665ad3antlr 493 . . . . . 6  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  I  e.  _V )
6751ad5ant23 522 . . . . . . 7  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  S : NN --> _V )
68 znegcl 9473 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  -u N  e.  ZZ )
6968ad4antr 494 . . . . . . . 8  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  -u N  e.  ZZ )
70 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  -.  N  =  0 )
71 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  -.  0  <  N )
72 ztri3or0 9484 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  ( N  <  0  \/  N  =  0  \/  0  <  N ) )
7372ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  ( N  <  0  \/  N  =  0  \/  0  <  N ) )
7470, 71, 73ecase23d 1384 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  N  <  0 )
75 zre 9446 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  RR )
7675ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  N  e.  RR )
7776lt0neg1d 8658 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  ( N  <  0  <->  0  <  -u N ) )
7874, 77mpbid 147 . . . . . . . 8  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  0  <  -u N )
79 elnnz 9452 . . . . . . . 8  |-  ( -u N  e.  NN  <->  ( -u N  e.  ZZ  /\  0  <  -u N ) )
8069, 78, 79sylanbrc 417 . . . . . . 7  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  -u N  e.  NN )
8167, 80ffvelcdmd 5770 . . . . . 6  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  ( S `  -u N )  e.  _V )
82 fvexg 5645 . . . . . 6  |-  ( ( I  e.  _V  /\  ( S `  -u N
)  e.  _V )  ->  ( I `  ( S `  -u N ) )  e.  _V )
8366, 81, 82syl2anc 411 . . . . 5  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  (
I `  ( S `  -u N ) )  e.  _V )
84 0zd 9454 . . . . . 6  |-  ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  ->  0  e.  ZZ )
85 simplll 533 . . . . . 6  |-  ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  ->  N  e.  ZZ )
86 zdclt 9520 . . . . . 6  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  -> DECID  0  <  N )
8784, 85, 86syl2anc 411 . . . . 5  |-  ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  -> DECID  0  <  N )
8857, 83, 87ifcldadc 3632 . . . 4  |-  ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  ->  if ( 0  <  N ,  ( S `  N ) ,  ( I `  ( S `  -u N
) ) )  e. 
_V )
89 0zd 9454 . . . . 5  |-  ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  ->  0  e.  ZZ )
90 zdceq 9518 . . . . 5  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
9126, 89, 90syl2anc 411 . . . 4  |-  ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  -> DECID 
N  =  0 )
9233, 88, 91ifcldadc 3632 . . 3  |-  ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  ->  if ( N  =  0 ,  .0.  ,  if ( 0  < 
N ,  ( S `
 N ) ,  ( I `  ( S `  -u N ) ) ) )  e. 
_V )
939, 25, 26, 27, 92ovmpod 6131 . 2  |-  ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  ->  ( N  .x.  X )  =  if ( N  =  0 ,  .0.  ,  if ( 0  <  N ,  ( S `  N ) ,  ( I `  ( S `
 -u N ) ) ) ) )
943, 93mpdan 421 1  |-  ( ( N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X
)  =  if ( N  =  0 ,  .0.  ,  if ( 0  <  N , 
( S `  N
) ,  ( I `
 ( S `  -u N ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 839    \/ w3o 1001    = wceq 1395    e. wcel 2200   _Vcvv 2799   ifcif 3602   {csn 3666   class class class wbr 4082    X. cxp 4716    Fn wfn 5312   -->wf 5313   ` cfv 5317  (class class class)co 6000    e. cmpo 6002   RRcr 7994   0cc0 7995   1c1 7996    < clt 8177   -ucneg 8314   NNcn 9106   ZZcz 9442    seqcseq 10664   Basecbs 13027   +g cplusg 13105   0gc0g 13284   invgcminusg 13529  .gcmg 13651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443  df-uz 9719  df-seqfrec 10665  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-0g 13286  df-minusg 13532  df-mulg 13652
This theorem is referenced by:  mulg0  13657  mulgnn  13658  mulgnegnn  13664  subgmulg  13720
  Copyright terms: Public domain W3C validator