ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgval Unicode version

Theorem mulgval 13192
Description: Value of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgval.b  |-  B  =  ( Base `  G
)
mulgval.p  |-  .+  =  ( +g  `  G )
mulgval.o  |-  .0.  =  ( 0g `  G )
mulgval.i  |-  I  =  ( invg `  G )
mulgval.t  |-  .x.  =  (.g
`  G )
mulgval.s  |-  S  =  seq 1 (  .+  ,  ( NN  X.  { X } ) )
Assertion
Ref Expression
mulgval  |-  ( ( N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X
)  =  if ( N  =  0 ,  .0.  ,  if ( 0  <  N , 
( S `  N
) ,  ( I `
 ( S `  -u N ) ) ) ) )

Proof of Theorem mulgval
Dummy variables  x  n  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgval.b . . . 4  |-  B  =  ( Base `  G
)
21basmex 12677 . . 3  |-  ( X  e.  B  ->  G  e.  _V )
32adantl 277 . 2  |-  ( ( N  e.  ZZ  /\  X  e.  B )  ->  G  e.  _V )
4 mulgval.p . . . . 5  |-  .+  =  ( +g  `  G )
5 mulgval.o . . . . 5  |-  .0.  =  ( 0g `  G )
6 mulgval.i . . . . 5  |-  I  =  ( invg `  G )
7 mulgval.t . . . . 5  |-  .x.  =  (.g
`  G )
81, 4, 5, 6, 7mulgfvalg 13191 . . . 4  |-  ( G  e.  _V  ->  .x.  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) ) )
98adantl 277 . . 3  |-  ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  ->  .x.  =  (
n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) ) )
10 simpl 109 . . . . . 6  |-  ( ( n  =  N  /\  x  =  X )  ->  n  =  N )
1110eqeq1d 2202 . . . . 5  |-  ( ( n  =  N  /\  x  =  X )  ->  ( n  =  0  <-> 
N  =  0 ) )
1210breq2d 4041 . . . . . 6  |-  ( ( n  =  N  /\  x  =  X )  ->  ( 0  <  n  <->  0  <  N ) )
13 simpr 110 . . . . . . . . . . 11  |-  ( ( n  =  N  /\  x  =  X )  ->  x  =  X )
1413sneqd 3631 . . . . . . . . . 10  |-  ( ( n  =  N  /\  x  =  X )  ->  { x }  =  { X } )
1514xpeq2d 4683 . . . . . . . . 9  |-  ( ( n  =  N  /\  x  =  X )  ->  ( NN  X.  {
x } )  =  ( NN  X.  { X } ) )
1615seqeq3d 10526 . . . . . . . 8  |-  ( ( n  =  N  /\  x  =  X )  ->  seq 1 (  .+  ,  ( NN  X.  { x } ) )  =  seq 1
(  .+  ,  ( NN  X.  { X }
) ) )
17 mulgval.s . . . . . . . 8  |-  S  =  seq 1 (  .+  ,  ( NN  X.  { X } ) )
1816, 17eqtr4di 2244 . . . . . . 7  |-  ( ( n  =  N  /\  x  =  X )  ->  seq 1 (  .+  ,  ( NN  X.  { x } ) )  =  S )
1918, 10fveq12d 5561 . . . . . 6  |-  ( ( n  =  N  /\  x  =  X )  ->  (  seq 1 ( 
.+  ,  ( NN 
X.  { x }
) ) `  n
)  =  ( S `
 N ) )
2010negeqd 8214 . . . . . . . 8  |-  ( ( n  =  N  /\  x  =  X )  -> 
-u n  =  -u N )
2118, 20fveq12d 5561 . . . . . . 7  |-  ( ( n  =  N  /\  x  =  X )  ->  (  seq 1 ( 
.+  ,  ( NN 
X.  { x }
) ) `  -u n
)  =  ( S `
 -u N ) )
2221fveq2d 5558 . . . . . 6  |-  ( ( n  =  N  /\  x  =  X )  ->  ( I `  (  seq 1 (  .+  , 
( NN  X.  {
x } ) ) `
 -u n ) )  =  ( I `  ( S `  -u N
) ) )
2312, 19, 22ifbieq12d 3583 . . . . 5  |-  ( ( n  =  N  /\  x  =  X )  ->  if ( 0  < 
n ,  (  seq 1 (  .+  , 
( NN  X.  {
x } ) ) `
 n ) ,  ( I `  (  seq 1 (  .+  , 
( NN  X.  {
x } ) ) `
 -u n ) ) )  =  if ( 0  <  N , 
( S `  N
) ,  ( I `
 ( S `  -u N ) ) ) )
2411, 23ifbieq2d 3581 . . . 4  |-  ( ( n  =  N  /\  x  =  X )  ->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) )  =  if ( N  =  0 ,  .0.  ,  if ( 0  < 
N ,  ( S `
 N ) ,  ( I `  ( S `  -u N ) ) ) ) )
2524adantl 277 . . 3  |-  ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  (
n  =  N  /\  x  =  X )
)  ->  if (
n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1 ( 
.+  ,  ( NN 
X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) )  =  if ( N  =  0 ,  .0.  ,  if ( 0  < 
N ,  ( S `
 N ) ,  ( I `  ( S `  -u N ) ) ) ) )
26 simpll 527 . . 3  |-  ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  ->  N  e.  ZZ )
27 simplr 528 . . 3  |-  ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  ->  X  e.  B
)
28 fn0g 12958 . . . . . . 7  |-  0g  Fn  _V
29 funfvex 5571 . . . . . . . 8  |-  ( ( Fun  0g  /\  G  e.  dom  0g )  -> 
( 0g `  G
)  e.  _V )
3029funfni 5354 . . . . . . 7  |-  ( ( 0g  Fn  _V  /\  G  e.  _V )  ->  ( 0g `  G
)  e.  _V )
3128, 30mpan 424 . . . . . 6  |-  ( G  e.  _V  ->  ( 0g `  G )  e. 
_V )
325, 31eqeltrid 2280 . . . . 5  |-  ( G  e.  _V  ->  .0.  e.  _V )
3332ad2antlr 489 . . . 4  |-  ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  N  =  0 )  ->  .0.  e.  _V )
34 nnuz 9628 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
35 1zzd 9344 . . . . . . . . 9  |-  ( ( X  e.  B  /\  G  e.  _V )  ->  1  e.  ZZ )
36 fvconst2g 5772 . . . . . . . . . . . 12  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  =  X )
37 simpl 109 . . . . . . . . . . . 12  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  X  e.  B )
3836, 37eqeltrd 2270 . . . . . . . . . . 11  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  e.  B
)
3938elexd 2773 . . . . . . . . . 10  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  e.  _V )
4039adantlr 477 . . . . . . . . 9  |-  ( ( ( X  e.  B  /\  G  e.  _V )  /\  u  e.  NN )  ->  ( ( NN 
X.  { X }
) `  u )  e.  _V )
41 simprl 529 . . . . . . . . . 10  |-  ( ( ( X  e.  B  /\  G  e.  _V )  /\  ( u  e. 
_V  /\  v  e.  _V ) )  ->  u  e.  _V )
42 plusgslid 12730 . . . . . . . . . . . . 13  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
4342slotex 12645 . . . . . . . . . . . 12  |-  ( G  e.  _V  ->  ( +g  `  G )  e. 
_V )
444, 43eqeltrid 2280 . . . . . . . . . . 11  |-  ( G  e.  _V  ->  .+  e.  _V )
4544ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( X  e.  B  /\  G  e.  _V )  /\  ( u  e. 
_V  /\  v  e.  _V ) )  ->  .+  e.  _V )
46 simprr 531 . . . . . . . . . 10  |-  ( ( ( X  e.  B  /\  G  e.  _V )  /\  ( u  e. 
_V  /\  v  e.  _V ) )  ->  v  e.  _V )
47 ovexg 5952 . . . . . . . . . 10  |-  ( ( u  e.  _V  /\  .+  e.  _V  /\  v  e.  _V )  ->  (
u  .+  v )  e.  _V )
4841, 45, 46, 47syl3anc 1249 . . . . . . . . 9  |-  ( ( ( X  e.  B  /\  G  e.  _V )  /\  ( u  e. 
_V  /\  v  e.  _V ) )  ->  (
u  .+  v )  e.  _V )
4934, 35, 40, 48seqf 10535 . . . . . . . 8  |-  ( ( X  e.  B  /\  G  e.  _V )  ->  seq 1 (  .+  ,  ( NN  X.  { X } ) ) : NN --> _V )
5017feq1i 5396 . . . . . . . 8  |-  ( S : NN --> _V  <->  seq 1
(  .+  ,  ( NN  X.  { X }
) ) : NN --> _V )
5149, 50sylibr 134 . . . . . . 7  |-  ( ( X  e.  B  /\  G  e.  _V )  ->  S : NN --> _V )
5251ad5ant23 522 . . . . . 6  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  0  <  N
)  ->  S : NN
--> _V )
53 simp-4l 541 . . . . . . 7  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  0  <  N
)  ->  N  e.  ZZ )
54 simpr 110 . . . . . . 7  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  0  <  N
)  ->  0  <  N )
55 elnnz 9327 . . . . . . 7  |-  ( N  e.  NN  <->  ( N  e.  ZZ  /\  0  < 
N ) )
5653, 54, 55sylanbrc 417 . . . . . 6  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  0  <  N
)  ->  N  e.  NN )
5752, 56ffvelcdmd 5694 . . . . 5  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  0  <  N
)  ->  ( S `  N )  e.  _V )
581, 6grpinvfng 13116 . . . . . . . 8  |-  ( G  e.  _V  ->  I  Fn  B )
59 basfn 12676 . . . . . . . . . 10  |-  Base  Fn  _V
60 funfvex 5571 . . . . . . . . . . 11  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
6160funfni 5354 . . . . . . . . . 10  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
6259, 61mpan 424 . . . . . . . . 9  |-  ( G  e.  _V  ->  ( Base `  G )  e. 
_V )
631, 62eqeltrid 2280 . . . . . . . 8  |-  ( G  e.  _V  ->  B  e.  _V )
64 fnex 5780 . . . . . . . 8  |-  ( ( I  Fn  B  /\  B  e.  _V )  ->  I  e.  _V )
6558, 63, 64syl2anc 411 . . . . . . 7  |-  ( G  e.  _V  ->  I  e.  _V )
6665ad3antlr 493 . . . . . 6  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  I  e.  _V )
6751ad5ant23 522 . . . . . . 7  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  S : NN --> _V )
68 znegcl 9348 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  -u N  e.  ZZ )
6968ad4antr 494 . . . . . . . 8  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  -u N  e.  ZZ )
70 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  -.  N  =  0 )
71 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  -.  0  <  N )
72 ztri3or0 9359 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  ( N  <  0  \/  N  =  0  \/  0  <  N ) )
7372ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  ( N  <  0  \/  N  =  0  \/  0  <  N ) )
7470, 71, 73ecase23d 1361 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  N  <  0 )
75 zre 9321 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  RR )
7675ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  N  e.  RR )
7776lt0neg1d 8534 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  ( N  <  0  <->  0  <  -u N ) )
7874, 77mpbid 147 . . . . . . . 8  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  0  <  -u N )
79 elnnz 9327 . . . . . . . 8  |-  ( -u N  e.  NN  <->  ( -u N  e.  ZZ  /\  0  <  -u N ) )
8069, 78, 79sylanbrc 417 . . . . . . 7  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  -u N  e.  NN )
8167, 80ffvelcdmd 5694 . . . . . 6  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  ( S `  -u N )  e.  _V )
82 fvexg 5573 . . . . . 6  |-  ( ( I  e.  _V  /\  ( S `  -u N
)  e.  _V )  ->  ( I `  ( S `  -u N ) )  e.  _V )
8366, 81, 82syl2anc 411 . . . . 5  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  (
I `  ( S `  -u N ) )  e.  _V )
84 0zd 9329 . . . . . 6  |-  ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  ->  0  e.  ZZ )
85 simplll 533 . . . . . 6  |-  ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  ->  N  e.  ZZ )
86 zdclt 9394 . . . . . 6  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  -> DECID  0  <  N )
8784, 85, 86syl2anc 411 . . . . 5  |-  ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  -> DECID  0  <  N )
8857, 83, 87ifcldadc 3586 . . . 4  |-  ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  ->  if ( 0  <  N ,  ( S `  N ) ,  ( I `  ( S `  -u N
) ) )  e. 
_V )
89 0zd 9329 . . . . 5  |-  ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  ->  0  e.  ZZ )
90 zdceq 9392 . . . . 5  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
9126, 89, 90syl2anc 411 . . . 4  |-  ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  -> DECID 
N  =  0 )
9233, 88, 91ifcldadc 3586 . . 3  |-  ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  ->  if ( N  =  0 ,  .0.  ,  if ( 0  < 
N ,  ( S `
 N ) ,  ( I `  ( S `  -u N ) ) ) )  e. 
_V )
939, 25, 26, 27, 92ovmpod 6046 . 2  |-  ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  ->  ( N  .x.  X )  =  if ( N  =  0 ,  .0.  ,  if ( 0  <  N ,  ( S `  N ) ,  ( I `  ( S `
 -u N ) ) ) ) )
943, 93mpdan 421 1  |-  ( ( N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X
)  =  if ( N  =  0 ,  .0.  ,  if ( 0  <  N , 
( S `  N
) ,  ( I `
 ( S `  -u N ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 835    \/ w3o 979    = wceq 1364    e. wcel 2164   _Vcvv 2760   ifcif 3557   {csn 3618   class class class wbr 4029    X. cxp 4657    Fn wfn 5249   -->wf 5250   ` cfv 5254  (class class class)co 5918    e. cmpo 5920   RRcr 7871   0cc0 7872   1c1 7873    < clt 8054   -ucneg 8191   NNcn 8982   ZZcz 9317    seqcseq 10518   Basecbs 12618   +g cplusg 12695   0gc0g 12867   invgcminusg 13073  .gcmg 13189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-seqfrec 10519  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-minusg 13076  df-mulg 13190
This theorem is referenced by:  mulg0  13195  mulgnn  13196  mulgnegnn  13202  subgmulg  13258
  Copyright terms: Public domain W3C validator