| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgval | Unicode version | ||
| Description: Value of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgval.b |
|
| mulgval.p |
|
| mulgval.o |
|
| mulgval.i |
|
| mulgval.t |
|
| mulgval.s |
|
| Ref | Expression |
|---|---|
| mulgval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgval.b |
. . . 4
| |
| 2 | 1 | basmex 12737 |
. . 3
|
| 3 | 2 | adantl 277 |
. 2
|
| 4 | mulgval.p |
. . . . 5
| |
| 5 | mulgval.o |
. . . . 5
| |
| 6 | mulgval.i |
. . . . 5
| |
| 7 | mulgval.t |
. . . . 5
| |
| 8 | 1, 4, 5, 6, 7 | mulgfvalg 13251 |
. . . 4
|
| 9 | 8 | adantl 277 |
. . 3
|
| 10 | simpl 109 |
. . . . . 6
| |
| 11 | 10 | eqeq1d 2205 |
. . . . 5
|
| 12 | 10 | breq2d 4045 |
. . . . . 6
|
| 13 | simpr 110 |
. . . . . . . . . . 11
| |
| 14 | 13 | sneqd 3635 |
. . . . . . . . . 10
|
| 15 | 14 | xpeq2d 4687 |
. . . . . . . . 9
|
| 16 | 15 | seqeq3d 10547 |
. . . . . . . 8
|
| 17 | mulgval.s |
. . . . . . . 8
| |
| 18 | 16, 17 | eqtr4di 2247 |
. . . . . . 7
|
| 19 | 18, 10 | fveq12d 5565 |
. . . . . 6
|
| 20 | 10 | negeqd 8221 |
. . . . . . . 8
|
| 21 | 18, 20 | fveq12d 5565 |
. . . . . . 7
|
| 22 | 21 | fveq2d 5562 |
. . . . . 6
|
| 23 | 12, 19, 22 | ifbieq12d 3587 |
. . . . 5
|
| 24 | 11, 23 | ifbieq2d 3585 |
. . . 4
|
| 25 | 24 | adantl 277 |
. . 3
|
| 26 | simpll 527 |
. . 3
| |
| 27 | simplr 528 |
. . 3
| |
| 28 | fn0g 13018 |
. . . . . . 7
| |
| 29 | funfvex 5575 |
. . . . . . . 8
| |
| 30 | 29 | funfni 5358 |
. . . . . . 7
|
| 31 | 28, 30 | mpan 424 |
. . . . . 6
|
| 32 | 5, 31 | eqeltrid 2283 |
. . . . 5
|
| 33 | 32 | ad2antlr 489 |
. . . 4
|
| 34 | nnuz 9637 |
. . . . . . . . 9
| |
| 35 | 1zzd 9353 |
. . . . . . . . 9
| |
| 36 | fvconst2g 5776 |
. . . . . . . . . . . 12
| |
| 37 | simpl 109 |
. . . . . . . . . . . 12
| |
| 38 | 36, 37 | eqeltrd 2273 |
. . . . . . . . . . 11
|
| 39 | 38 | elexd 2776 |
. . . . . . . . . 10
|
| 40 | 39 | adantlr 477 |
. . . . . . . . 9
|
| 41 | simprl 529 |
. . . . . . . . . 10
| |
| 42 | plusgslid 12790 |
. . . . . . . . . . . . 13
| |
| 43 | 42 | slotex 12705 |
. . . . . . . . . . . 12
|
| 44 | 4, 43 | eqeltrid 2283 |
. . . . . . . . . . 11
|
| 45 | 44 | ad2antlr 489 |
. . . . . . . . . 10
|
| 46 | simprr 531 |
. . . . . . . . . 10
| |
| 47 | ovexg 5956 |
. . . . . . . . . 10
| |
| 48 | 41, 45, 46, 47 | syl3anc 1249 |
. . . . . . . . 9
|
| 49 | 34, 35, 40, 48 | seqf 10556 |
. . . . . . . 8
|
| 50 | 17 | feq1i 5400 |
. . . . . . . 8
|
| 51 | 49, 50 | sylibr 134 |
. . . . . . 7
|
| 52 | 51 | ad5ant23 522 |
. . . . . 6
|
| 53 | simp-4l 541 |
. . . . . . 7
| |
| 54 | simpr 110 |
. . . . . . 7
| |
| 55 | elnnz 9336 |
. . . . . . 7
| |
| 56 | 53, 54, 55 | sylanbrc 417 |
. . . . . 6
|
| 57 | 52, 56 | ffvelcdmd 5698 |
. . . . 5
|
| 58 | 1, 6 | grpinvfng 13176 |
. . . . . . . 8
|
| 59 | basfn 12736 |
. . . . . . . . . 10
| |
| 60 | funfvex 5575 |
. . . . . . . . . . 11
| |
| 61 | 60 | funfni 5358 |
. . . . . . . . . 10
|
| 62 | 59, 61 | mpan 424 |
. . . . . . . . 9
|
| 63 | 1, 62 | eqeltrid 2283 |
. . . . . . . 8
|
| 64 | fnex 5784 |
. . . . . . . 8
| |
| 65 | 58, 63, 64 | syl2anc 411 |
. . . . . . 7
|
| 66 | 65 | ad3antlr 493 |
. . . . . 6
|
| 67 | 51 | ad5ant23 522 |
. . . . . . 7
|
| 68 | znegcl 9357 |
. . . . . . . . 9
| |
| 69 | 68 | ad4antr 494 |
. . . . . . . 8
|
| 70 | simplr 528 |
. . . . . . . . . 10
| |
| 71 | simpr 110 |
. . . . . . . . . 10
| |
| 72 | ztri3or0 9368 |
. . . . . . . . . . 11
| |
| 73 | 72 | ad4antr 494 |
. . . . . . . . . 10
|
| 74 | 70, 71, 73 | ecase23d 1361 |
. . . . . . . . 9
|
| 75 | zre 9330 |
. . . . . . . . . . 11
| |
| 76 | 75 | ad4antr 494 |
. . . . . . . . . 10
|
| 77 | 76 | lt0neg1d 8542 |
. . . . . . . . 9
|
| 78 | 74, 77 | mpbid 147 |
. . . . . . . 8
|
| 79 | elnnz 9336 |
. . . . . . . 8
| |
| 80 | 69, 78, 79 | sylanbrc 417 |
. . . . . . 7
|
| 81 | 67, 80 | ffvelcdmd 5698 |
. . . . . 6
|
| 82 | fvexg 5577 |
. . . . . 6
| |
| 83 | 66, 81, 82 | syl2anc 411 |
. . . . 5
|
| 84 | 0zd 9338 |
. . . . . 6
| |
| 85 | simplll 533 |
. . . . . 6
| |
| 86 | zdclt 9403 |
. . . . . 6
| |
| 87 | 84, 85, 86 | syl2anc 411 |
. . . . 5
|
| 88 | 57, 83, 87 | ifcldadc 3590 |
. . . 4
|
| 89 | 0zd 9338 |
. . . . 5
| |
| 90 | zdceq 9401 |
. . . . 5
| |
| 91 | 26, 89, 90 | syl2anc 411 |
. . . 4
|
| 92 | 33, 88, 91 | ifcldadc 3590 |
. . 3
|
| 93 | 9, 25, 26, 27, 92 | ovmpod 6050 |
. 2
|
| 94 | 3, 93 | mpdan 421 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-2 9049 df-n0 9250 df-z 9327 df-uz 9602 df-seqfrec 10540 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 df-minusg 13136 df-mulg 13250 |
| This theorem is referenced by: mulg0 13255 mulgnn 13256 mulgnegnn 13262 subgmulg 13318 |
| Copyright terms: Public domain | W3C validator |