ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgval Unicode version

Theorem mulgval 13252
Description: Value of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgval.b  |-  B  =  ( Base `  G
)
mulgval.p  |-  .+  =  ( +g  `  G )
mulgval.o  |-  .0.  =  ( 0g `  G )
mulgval.i  |-  I  =  ( invg `  G )
mulgval.t  |-  .x.  =  (.g
`  G )
mulgval.s  |-  S  =  seq 1 (  .+  ,  ( NN  X.  { X } ) )
Assertion
Ref Expression
mulgval  |-  ( ( N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X
)  =  if ( N  =  0 ,  .0.  ,  if ( 0  <  N , 
( S `  N
) ,  ( I `
 ( S `  -u N ) ) ) ) )

Proof of Theorem mulgval
Dummy variables  x  n  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgval.b . . . 4  |-  B  =  ( Base `  G
)
21basmex 12737 . . 3  |-  ( X  e.  B  ->  G  e.  _V )
32adantl 277 . 2  |-  ( ( N  e.  ZZ  /\  X  e.  B )  ->  G  e.  _V )
4 mulgval.p . . . . 5  |-  .+  =  ( +g  `  G )
5 mulgval.o . . . . 5  |-  .0.  =  ( 0g `  G )
6 mulgval.i . . . . 5  |-  I  =  ( invg `  G )
7 mulgval.t . . . . 5  |-  .x.  =  (.g
`  G )
81, 4, 5, 6, 7mulgfvalg 13251 . . . 4  |-  ( G  e.  _V  ->  .x.  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) ) )
98adantl 277 . . 3  |-  ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  ->  .x.  =  (
n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) ) )
10 simpl 109 . . . . . 6  |-  ( ( n  =  N  /\  x  =  X )  ->  n  =  N )
1110eqeq1d 2205 . . . . 5  |-  ( ( n  =  N  /\  x  =  X )  ->  ( n  =  0  <-> 
N  =  0 ) )
1210breq2d 4045 . . . . . 6  |-  ( ( n  =  N  /\  x  =  X )  ->  ( 0  <  n  <->  0  <  N ) )
13 simpr 110 . . . . . . . . . . 11  |-  ( ( n  =  N  /\  x  =  X )  ->  x  =  X )
1413sneqd 3635 . . . . . . . . . 10  |-  ( ( n  =  N  /\  x  =  X )  ->  { x }  =  { X } )
1514xpeq2d 4687 . . . . . . . . 9  |-  ( ( n  =  N  /\  x  =  X )  ->  ( NN  X.  {
x } )  =  ( NN  X.  { X } ) )
1615seqeq3d 10547 . . . . . . . 8  |-  ( ( n  =  N  /\  x  =  X )  ->  seq 1 (  .+  ,  ( NN  X.  { x } ) )  =  seq 1
(  .+  ,  ( NN  X.  { X }
) ) )
17 mulgval.s . . . . . . . 8  |-  S  =  seq 1 (  .+  ,  ( NN  X.  { X } ) )
1816, 17eqtr4di 2247 . . . . . . 7  |-  ( ( n  =  N  /\  x  =  X )  ->  seq 1 (  .+  ,  ( NN  X.  { x } ) )  =  S )
1918, 10fveq12d 5565 . . . . . 6  |-  ( ( n  =  N  /\  x  =  X )  ->  (  seq 1 ( 
.+  ,  ( NN 
X.  { x }
) ) `  n
)  =  ( S `
 N ) )
2010negeqd 8221 . . . . . . . 8  |-  ( ( n  =  N  /\  x  =  X )  -> 
-u n  =  -u N )
2118, 20fveq12d 5565 . . . . . . 7  |-  ( ( n  =  N  /\  x  =  X )  ->  (  seq 1 ( 
.+  ,  ( NN 
X.  { x }
) ) `  -u n
)  =  ( S `
 -u N ) )
2221fveq2d 5562 . . . . . 6  |-  ( ( n  =  N  /\  x  =  X )  ->  ( I `  (  seq 1 (  .+  , 
( NN  X.  {
x } ) ) `
 -u n ) )  =  ( I `  ( S `  -u N
) ) )
2312, 19, 22ifbieq12d 3587 . . . . 5  |-  ( ( n  =  N  /\  x  =  X )  ->  if ( 0  < 
n ,  (  seq 1 (  .+  , 
( NN  X.  {
x } ) ) `
 n ) ,  ( I `  (  seq 1 (  .+  , 
( NN  X.  {
x } ) ) `
 -u n ) ) )  =  if ( 0  <  N , 
( S `  N
) ,  ( I `
 ( S `  -u N ) ) ) )
2411, 23ifbieq2d 3585 . . . 4  |-  ( ( n  =  N  /\  x  =  X )  ->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) )  =  if ( N  =  0 ,  .0.  ,  if ( 0  < 
N ,  ( S `
 N ) ,  ( I `  ( S `  -u N ) ) ) ) )
2524adantl 277 . . 3  |-  ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  (
n  =  N  /\  x  =  X )
)  ->  if (
n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1 ( 
.+  ,  ( NN 
X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) )  =  if ( N  =  0 ,  .0.  ,  if ( 0  < 
N ,  ( S `
 N ) ,  ( I `  ( S `  -u N ) ) ) ) )
26 simpll 527 . . 3  |-  ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  ->  N  e.  ZZ )
27 simplr 528 . . 3  |-  ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  ->  X  e.  B
)
28 fn0g 13018 . . . . . . 7  |-  0g  Fn  _V
29 funfvex 5575 . . . . . . . 8  |-  ( ( Fun  0g  /\  G  e.  dom  0g )  -> 
( 0g `  G
)  e.  _V )
3029funfni 5358 . . . . . . 7  |-  ( ( 0g  Fn  _V  /\  G  e.  _V )  ->  ( 0g `  G
)  e.  _V )
3128, 30mpan 424 . . . . . 6  |-  ( G  e.  _V  ->  ( 0g `  G )  e. 
_V )
325, 31eqeltrid 2283 . . . . 5  |-  ( G  e.  _V  ->  .0.  e.  _V )
3332ad2antlr 489 . . . 4  |-  ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  N  =  0 )  ->  .0.  e.  _V )
34 nnuz 9637 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
35 1zzd 9353 . . . . . . . . 9  |-  ( ( X  e.  B  /\  G  e.  _V )  ->  1  e.  ZZ )
36 fvconst2g 5776 . . . . . . . . . . . 12  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  =  X )
37 simpl 109 . . . . . . . . . . . 12  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  X  e.  B )
3836, 37eqeltrd 2273 . . . . . . . . . . 11  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  e.  B
)
3938elexd 2776 . . . . . . . . . 10  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  e.  _V )
4039adantlr 477 . . . . . . . . 9  |-  ( ( ( X  e.  B  /\  G  e.  _V )  /\  u  e.  NN )  ->  ( ( NN 
X.  { X }
) `  u )  e.  _V )
41 simprl 529 . . . . . . . . . 10  |-  ( ( ( X  e.  B  /\  G  e.  _V )  /\  ( u  e. 
_V  /\  v  e.  _V ) )  ->  u  e.  _V )
42 plusgslid 12790 . . . . . . . . . . . . 13  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
4342slotex 12705 . . . . . . . . . . . 12  |-  ( G  e.  _V  ->  ( +g  `  G )  e. 
_V )
444, 43eqeltrid 2283 . . . . . . . . . . 11  |-  ( G  e.  _V  ->  .+  e.  _V )
4544ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( X  e.  B  /\  G  e.  _V )  /\  ( u  e. 
_V  /\  v  e.  _V ) )  ->  .+  e.  _V )
46 simprr 531 . . . . . . . . . 10  |-  ( ( ( X  e.  B  /\  G  e.  _V )  /\  ( u  e. 
_V  /\  v  e.  _V ) )  ->  v  e.  _V )
47 ovexg 5956 . . . . . . . . . 10  |-  ( ( u  e.  _V  /\  .+  e.  _V  /\  v  e.  _V )  ->  (
u  .+  v )  e.  _V )
4841, 45, 46, 47syl3anc 1249 . . . . . . . . 9  |-  ( ( ( X  e.  B  /\  G  e.  _V )  /\  ( u  e. 
_V  /\  v  e.  _V ) )  ->  (
u  .+  v )  e.  _V )
4934, 35, 40, 48seqf 10556 . . . . . . . 8  |-  ( ( X  e.  B  /\  G  e.  _V )  ->  seq 1 (  .+  ,  ( NN  X.  { X } ) ) : NN --> _V )
5017feq1i 5400 . . . . . . . 8  |-  ( S : NN --> _V  <->  seq 1
(  .+  ,  ( NN  X.  { X }
) ) : NN --> _V )
5149, 50sylibr 134 . . . . . . 7  |-  ( ( X  e.  B  /\  G  e.  _V )  ->  S : NN --> _V )
5251ad5ant23 522 . . . . . 6  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  0  <  N
)  ->  S : NN
--> _V )
53 simp-4l 541 . . . . . . 7  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  0  <  N
)  ->  N  e.  ZZ )
54 simpr 110 . . . . . . 7  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  0  <  N
)  ->  0  <  N )
55 elnnz 9336 . . . . . . 7  |-  ( N  e.  NN  <->  ( N  e.  ZZ  /\  0  < 
N ) )
5653, 54, 55sylanbrc 417 . . . . . 6  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  0  <  N
)  ->  N  e.  NN )
5752, 56ffvelcdmd 5698 . . . . 5  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  0  <  N
)  ->  ( S `  N )  e.  _V )
581, 6grpinvfng 13176 . . . . . . . 8  |-  ( G  e.  _V  ->  I  Fn  B )
59 basfn 12736 . . . . . . . . . 10  |-  Base  Fn  _V
60 funfvex 5575 . . . . . . . . . . 11  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
6160funfni 5358 . . . . . . . . . 10  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
6259, 61mpan 424 . . . . . . . . 9  |-  ( G  e.  _V  ->  ( Base `  G )  e. 
_V )
631, 62eqeltrid 2283 . . . . . . . 8  |-  ( G  e.  _V  ->  B  e.  _V )
64 fnex 5784 . . . . . . . 8  |-  ( ( I  Fn  B  /\  B  e.  _V )  ->  I  e.  _V )
6558, 63, 64syl2anc 411 . . . . . . 7  |-  ( G  e.  _V  ->  I  e.  _V )
6665ad3antlr 493 . . . . . 6  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  I  e.  _V )
6751ad5ant23 522 . . . . . . 7  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  S : NN --> _V )
68 znegcl 9357 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  -u N  e.  ZZ )
6968ad4antr 494 . . . . . . . 8  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  -u N  e.  ZZ )
70 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  -.  N  =  0 )
71 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  -.  0  <  N )
72 ztri3or0 9368 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  ( N  <  0  \/  N  =  0  \/  0  <  N ) )
7372ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  ( N  <  0  \/  N  =  0  \/  0  <  N ) )
7470, 71, 73ecase23d 1361 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  N  <  0 )
75 zre 9330 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  RR )
7675ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  N  e.  RR )
7776lt0neg1d 8542 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  ( N  <  0  <->  0  <  -u N ) )
7874, 77mpbid 147 . . . . . . . 8  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  0  <  -u N )
79 elnnz 9336 . . . . . . . 8  |-  ( -u N  e.  NN  <->  ( -u N  e.  ZZ  /\  0  <  -u N ) )
8069, 78, 79sylanbrc 417 . . . . . . 7  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  -u N  e.  NN )
8167, 80ffvelcdmd 5698 . . . . . 6  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  ( S `  -u N )  e.  _V )
82 fvexg 5577 . . . . . 6  |-  ( ( I  e.  _V  /\  ( S `  -u N
)  e.  _V )  ->  ( I `  ( S `  -u N ) )  e.  _V )
8366, 81, 82syl2anc 411 . . . . 5  |-  ( ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  /\  -.  0  < 
N )  ->  (
I `  ( S `  -u N ) )  e.  _V )
84 0zd 9338 . . . . . 6  |-  ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  ->  0  e.  ZZ )
85 simplll 533 . . . . . 6  |-  ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  ->  N  e.  ZZ )
86 zdclt 9403 . . . . . 6  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  -> DECID  0  <  N )
8784, 85, 86syl2anc 411 . . . . 5  |-  ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  -> DECID  0  <  N )
8857, 83, 87ifcldadc 3590 . . . 4  |-  ( ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  /\  -.  N  =  0 )  ->  if ( 0  <  N ,  ( S `  N ) ,  ( I `  ( S `  -u N
) ) )  e. 
_V )
89 0zd 9338 . . . . 5  |-  ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  ->  0  e.  ZZ )
90 zdceq 9401 . . . . 5  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
9126, 89, 90syl2anc 411 . . . 4  |-  ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  -> DECID 
N  =  0 )
9233, 88, 91ifcldadc 3590 . . 3  |-  ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  ->  if ( N  =  0 ,  .0.  ,  if ( 0  < 
N ,  ( S `
 N ) ,  ( I `  ( S `  -u N ) ) ) )  e. 
_V )
939, 25, 26, 27, 92ovmpod 6050 . 2  |-  ( ( ( N  e.  ZZ  /\  X  e.  B )  /\  G  e.  _V )  ->  ( N  .x.  X )  =  if ( N  =  0 ,  .0.  ,  if ( 0  <  N ,  ( S `  N ) ,  ( I `  ( S `
 -u N ) ) ) ) )
943, 93mpdan 421 1  |-  ( ( N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X
)  =  if ( N  =  0 ,  .0.  ,  if ( 0  <  N , 
( S `  N
) ,  ( I `
 ( S `  -u N ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 835    \/ w3o 979    = wceq 1364    e. wcel 2167   _Vcvv 2763   ifcif 3561   {csn 3622   class class class wbr 4033    X. cxp 4661    Fn wfn 5253   -->wf 5254   ` cfv 5258  (class class class)co 5922    e. cmpo 5924   RRcr 7878   0cc0 7879   1c1 7880    < clt 8061   -ucneg 8198   NNcn 8990   ZZcz 9326    seqcseq 10539   Basecbs 12678   +g cplusg 12755   0gc0g 12927   invgcminusg 13133  .gcmg 13249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-seqfrec 10540  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-minusg 13136  df-mulg 13250
This theorem is referenced by:  mulg0  13255  mulgnn  13256  mulgnegnn  13262  subgmulg  13318
  Copyright terms: Public domain W3C validator