ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgmulg Unicode version

Theorem subgmulg 13053
Description: A group multiple is the same if evaluated in a subgroup. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
subgmulgcl.t  |-  .x.  =  (.g
`  G )
subgmulg.h  |-  H  =  ( Gs  S )
subgmulg.t  |-  .xb  =  (.g
`  H )
Assertion
Ref Expression
subgmulg  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  .x.  X )  =  ( N  .xb  X
) )

Proof of Theorem subgmulg
StepHypRef Expression
1 subgmulg.h . . . . . 6  |-  H  =  ( Gs  S )
2 eqid 2177 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
31, 2subg0 13045 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  G )  =  ( 0g `  H ) )
433ad2ant1 1018 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( 0g `  G )  =  ( 0g `  H
) )
54ifeq1d 3553 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  if ( N  =  0 ,  ( 0g `  G ) ,  if ( 0  <  N ,  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  N
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) )  =  if ( N  =  0 ,  ( 0g `  H
) ,  if ( 0  <  N , 
(  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) ) )
61a1i 9 . . . . . . . . . . 11  |-  ( S  e.  (SubGrp `  G
)  ->  H  =  ( Gs  S ) )
7 eqid 2177 . . . . . . . . . . . 12  |-  ( +g  `  G )  =  ( +g  `  G )
87a1i 9 . . . . . . . . . . 11  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  G ) )
9 id 19 . . . . . . . . . . 11  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
10 subgrcl 13044 . . . . . . . . . . 11  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
116, 8, 9, 10ressplusgd 12589 . . . . . . . . . 10  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  H ) )
12113ad2ant1 1018 . . . . . . . . 9  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( +g  `  G )  =  ( +g  `  H
) )
1312seqeq2d 10454 . . . . . . . 8  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) )  =  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) )
1413adantr 276 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  -.  N  =  0 )  ->  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) )  =  seq 1 ( ( +g  `  H
) ,  ( NN 
X.  { X }
) ) )
1514fveq1d 5519 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  -.  N  =  0 )  ->  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  N
)  =  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  N ) )
1615ifeq1d 3553 . . . . 5  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  -.  N  =  0 )  ->  if ( 0  <  N ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )  =  if ( 0  <  N ,  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) )
17 simprl 529 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  -.  N  =  0 )
18 simprr 531 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  -.  0  <  N )
19 simp2 998 . . . . . . . . . . . 12  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  N  e.  ZZ )
20 ztri3or0 9297 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( N  <  0  \/  N  =  0  \/  0  <  N ) )
2119, 20syl 14 . . . . . . . . . . 11  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  <  0  \/  N  =  0  \/  0  <  N ) )
2221adantr 276 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  ( N  <  0  \/  N  =  0  \/  0  <  N ) )
2317, 18, 22ecase23d 1350 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  N  <  0 )
24 simpl1 1000 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  S  e.  (SubGrp `  G )
)
2519adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  N  e.  ZZ )
2625znegcld 9379 . . . . . . . . . . . . 13  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  -u N  e.  ZZ )
2719zred 9377 . . . . . . . . . . . . . . 15  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  N  e.  RR )
2827lt0neg1d 8474 . . . . . . . . . . . . . 14  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  <  0  <->  0  <  -u N ) )
2928biimpa 296 . . . . . . . . . . . . 13  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  0  <  -u N )
30 elnnz 9265 . . . . . . . . . . . . 13  |-  ( -u N  e.  NN  <->  ( -u N  e.  ZZ  /\  0  <  -u N ) )
3126, 29, 30sylanbrc 417 . . . . . . . . . . . 12  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  -u N  e.  NN )
32 eqid 2177 . . . . . . . . . . . . . . . 16  |-  ( Base `  G )  =  (
Base `  G )
3332subgss 13039 . . . . . . . . . . . . . . 15  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  ( Base `  G ) )
34333ad2ant1 1018 . . . . . . . . . . . . . 14  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  S  C_  ( Base `  G
) )
35 simp3 999 . . . . . . . . . . . . . 14  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  X  e.  S )
3634, 35sseldd 3158 . . . . . . . . . . . . 13  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  X  e.  ( Base `  G
) )
3736adantr 276 . . . . . . . . . . . 12  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  X  e.  ( Base `  G
) )
38 subgmulgcl.t . . . . . . . . . . . . 13  |-  .x.  =  (.g
`  G )
39 eqid 2177 . . . . . . . . . . . . 13  |-  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) )  =  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) )
4032, 7, 38, 39mulgnn 12994 . . . . . . . . . . . 12  |-  ( (
-u N  e.  NN  /\  X  e.  ( Base `  G ) )  -> 
( -u N  .x.  X
)  =  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) )
4131, 37, 40syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  ( -u N  .x.  X )  =  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  -u N
) )
4235adantr 276 . . . . . . . . . . . 12  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  X  e.  S )
4338subgmulgcl 13052 . . . . . . . . . . . 12  |-  ( ( S  e.  (SubGrp `  G )  /\  -u N  e.  ZZ  /\  X  e.  S )  ->  ( -u N  .x.  X )  e.  S )
4424, 26, 42, 43syl3anc 1238 . . . . . . . . . . 11  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  ( -u N  .x.  X )  e.  S )
4541, 44eqeltrrd 2255 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N )  e.  S
)
46 eqid 2177 . . . . . . . . . . 11  |-  ( invg `  G )  =  ( invg `  G )
47 eqid 2177 . . . . . . . . . . 11  |-  ( invg `  H )  =  ( invg `  H )
481, 46, 47subginv 13046 . . . . . . . . . 10  |-  ( ( S  e.  (SubGrp `  G )  /\  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N )  e.  S
)  ->  ( ( invg `  G ) `
 (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  -u N
) )  =  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )
4924, 45, 48syl2anc 411 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  (
( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) )  =  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )
5023, 49syldan 282 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  (
( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) )  =  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )
5113adantr 276 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) )  =  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) )
5251fveq1d 5519 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N )  =  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 -u N ) )
5352fveq2d 5521 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  (
( invg `  H ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) )  =  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )
5450, 53eqtrd 2210 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  (
( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) )  =  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )
5554anassrs 400 . . . . . 6  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  -.  N  =  0 )  /\  -.  0  <  N )  -> 
( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) )  =  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )
56 0z 9266 . . . . . . 7  |-  0  e.  ZZ
5719adantr 276 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  -.  N  =  0 )  ->  N  e.  ZZ )
58 zdclt 9332 . . . . . . 7  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  -> DECID  0  <  N )
5956, 57, 58sylancr 414 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  -.  N  =  0 )  -> DECID  0  <  N )
6055, 59ifeq2dadc 3567 . . . . 5  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  -.  N  =  0 )  ->  if ( 0  <  N ,  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )  =  if ( 0  <  N ,  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) )
6116, 60eqtrd 2210 . . . 4  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  -.  N  =  0 )  ->  if ( 0  <  N ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )  =  if ( 0  <  N ,  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) )
62 0zd 9267 . . . . 5  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  0  e.  ZZ )
63 zdceq 9330 . . . . 5  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
6419, 62, 63syl2anc 411 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  -> DECID  N  =  0
)
6561, 64ifeq2dadc 3567 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  if ( N  =  0 ,  ( 0g `  H ) ,  if ( 0  <  N ,  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  N
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) )  =  if ( N  =  0 ,  ( 0g `  H
) ,  if ( 0  <  N , 
(  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) ) )
665, 65eqtrd 2210 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  if ( N  =  0 ,  ( 0g `  G ) ,  if ( 0  <  N ,  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  N
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) )  =  if ( N  =  0 ,  ( 0g `  H
) ,  if ( 0  <  N , 
(  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) ) )
6732, 7, 2, 46, 38, 39mulgval 12991 . . 3  |-  ( ( N  e.  ZZ  /\  X  e.  ( Base `  G ) )  -> 
( N  .x.  X
)  =  if ( N  =  0 ,  ( 0g `  G
) ,  if ( 0  <  N , 
(  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) ) )
6819, 36, 67syl2anc 411 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  .x.  X )  =  if ( N  =  0 ,  ( 0g
`  G ) ,  if ( 0  < 
N ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  N ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) ) )
691subgbas 13043 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  =  ( Base `  H )
)
70693ad2ant1 1018 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  S  =  ( Base `  H
) )
7135, 70eleqtrd 2256 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  X  e.  ( Base `  H
) )
72 eqid 2177 . . . 4  |-  ( Base `  H )  =  (
Base `  H )
73 eqid 2177 . . . 4  |-  ( +g  `  H )  =  ( +g  `  H )
74 eqid 2177 . . . 4  |-  ( 0g
`  H )  =  ( 0g `  H
)
75 subgmulg.t . . . 4  |-  .xb  =  (.g
`  H )
76 eqid 2177 . . . 4  |-  seq 1
( ( +g  `  H
) ,  ( NN 
X.  { X }
) )  =  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) )
7772, 73, 74, 47, 75, 76mulgval 12991 . . 3  |-  ( ( N  e.  ZZ  /\  X  e.  ( Base `  H ) )  -> 
( N  .xb  X
)  =  if ( N  =  0 ,  ( 0g `  H
) ,  if ( 0  <  N , 
(  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) ) )
7819, 71, 77syl2anc 411 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  .xb  X )  =  if ( N  =  0 ,  ( 0g
`  H ) ,  if ( 0  < 
N ,  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  N ) ,  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) ) )
7966, 68, 783eqtr4d 2220 1  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  .x.  X )  =  ( N  .xb  X
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 834    \/ w3o 977    /\ w3a 978    = wceq 1353    e. wcel 2148    C_ wss 3131   ifcif 3536   {csn 3594   class class class wbr 4005    X. cxp 4626   ` cfv 5218  (class class class)co 5877   0cc0 7813   1c1 7814    < clt 7994   -ucneg 8131   NNcn 8921   ZZcz 9255    seqcseq 10447   Basecbs 12464   ↾s cress 12465   +g cplusg 12538   0gc0g 12710   Grpcgrp 12882   invgcminusg 12883  .gcmg 12988  SubGrpcsubg 13032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-2 8980  df-n0 9179  df-z 9256  df-uz 9531  df-seqfrec 10448  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-iress 12472  df-plusg 12551  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-grp 12885  df-minusg 12886  df-mulg 12989  df-subg 13035
This theorem is referenced by:  zringmulg  13573
  Copyright terms: Public domain W3C validator