Proof of Theorem subgmulg
| Step | Hyp | Ref
 | Expression | 
| 1 |   | subgmulg.h | 
. . . . . 6
        
↾s    | 
| 2 |   | eqid 2196 | 
. . . . . 6
                | 
| 3 | 1, 2 | subg0 13310 | 
. . . . 5
        SubGrp     
               | 
| 4 | 3 | 3ad2ant1 1020 | 
. . . 4
         SubGrp                                      | 
| 5 | 4 | ifeq1d 3578 | 
. . 3
         SubGrp                          
                      
                                                                                                                                                                | 
| 6 | 1 | a1i 9 | 
. . . . . . . . . . 11
        SubGrp     
      
↾s     | 
| 7 |   | eqid 2196 | 
. . . . . . . . . . . 12
                  | 
| 8 | 7 | a1i 9 | 
. . . . . . . . . . 11
        SubGrp     
                 | 
| 9 |   | id 19 | 
. . . . . . . . . . 11
        SubGrp     
     SubGrp     | 
| 10 |   | subgrcl 13309 | 
. . . . . . . . . . 11
        SubGrp     
       | 
| 11 | 6, 8, 9, 10 | ressplusgd 12806 | 
. . . . . . . . . 10
        SubGrp     
                 | 
| 12 | 11 | 3ad2ant1 1020 | 
. . . . . . . . 9
         SubGrp                                        | 
| 13 | 12 | seqeq2d 10546 | 
. . . . . . . 8
         SubGrp                                                                      | 
| 14 | 13 | adantr 276 | 
. . . . . . 7
          SubGrp                            
                                                    | 
| 15 | 14 | fveq1d 5560 | 
. . . . . 6
          SubGrp                            
                                                              | 
| 16 | 15 | ifeq1d 3578 | 
. . . . 5
          SubGrp                            
                                                                                                                                                              | 
| 17 |   | simprl 529 | 
. . . . . . . . . 10
          SubGrp                           
                       
   | 
| 18 |   | simprr 531 | 
. . . . . . . . . 10
          SubGrp                           
                           | 
| 19 |   | simp2 1000 | 
. . . . . . . . . . . 12
         SubGrp                              | 
| 20 |   | ztri3or0 9368 | 
. . . . . . . . . . . 12
                                    | 
| 21 | 19, 20 | syl 14 | 
. . . . . . . . . . 11
         SubGrp                                                | 
| 22 | 21 | adantr 276 | 
. . . . . . . . . 10
          SubGrp                           
                                           | 
| 23 | 17, 18, 22 | ecase23d 1361 | 
. . . . . . . . 9
          SubGrp                           
                         | 
| 24 |   | simpl1 1002 | 
. . . . . . . . . 10
          SubGrp                                     SubGrp     | 
| 25 | 19 | adantr 276 | 
. . . . . . . . . . . . . 14
          SubGrp                                       | 
| 26 | 25 | znegcld 9450 | 
. . . . . . . . . . . . 13
          SubGrp                                        | 
| 27 | 19 | zred 9448 | 
. . . . . . . . . . . . . . 15
         SubGrp                              | 
| 28 | 27 | lt0neg1d 8542 | 
. . . . . . . . . . . . . 14
         SubGrp                               
         | 
| 29 | 28 | biimpa 296 | 
. . . . . . . . . . . . 13
          SubGrp                                        | 
| 30 |   | elnnz 9336 | 
. . . . . . . . . . . . 13
       
   
                   | 
| 31 | 26, 29, 30 | sylanbrc 417 | 
. . . . . . . . . . . 12
          SubGrp                                        | 
| 32 |   | eqid 2196 | 
. . . . . . . . . . . . . . . 16
                | 
| 33 | 32 | subgss 13304 | 
. . . . . . . . . . . . . . 15
        SubGrp     
           | 
| 34 | 33 | 3ad2ant1 1020 | 
. . . . . . . . . . . . . 14
         SubGrp                                  | 
| 35 |   | simp3 1001 | 
. . . . . . . . . . . . . 14
         SubGrp                              | 
| 36 | 34, 35 | sseldd 3184 | 
. . . . . . . . . . . . 13
         SubGrp                                  | 
| 37 | 36 | adantr 276 | 
. . . . . . . . . . . 12
          SubGrp                                           | 
| 38 |   | subgmulgcl.t | 
. . . . . . . . . . . . 13
       .g    | 
| 39 |   | eqid 2196 | 
. . . . . . . . . . . . 13
                                                | 
| 40 | 32, 7, 38, 39 | mulgnn 13256 | 
. . . . . . . . . . . 12
                                                                  | 
| 41 | 31, 37, 40 | syl2anc 411 | 
. . . . . . . . . . 11
          SubGrp                                                                        | 
| 42 | 35 | adantr 276 | 
. . . . . . . . . . . 12
          SubGrp                                       | 
| 43 | 38 | subgmulgcl 13317 | 
. . . . . . . . . . . 12
         SubGrp                                      | 
| 44 | 24, 26, 42, 43 | syl3anc 1249 | 
. . . . . . . . . . 11
          SubGrp                                              | 
| 45 | 41, 44 | eqeltrrd 2274 | 
. . . . . . . . . 10
          SubGrp                                                                 | 
| 46 |   | eqid 2196 | 
. . . . . . . . . . 11
                  | 
| 47 |   | eqid 2196 | 
. . . . . . . . . . 11
                  | 
| 48 | 1, 46, 47 | subginv 13311 | 
. . . . . . . . . 10
         SubGrp                                        
                                                                             | 
| 49 | 24, 45, 48 | syl2anc 411 | 
. . . . . . . . 9
          SubGrp                                                                                                             | 
| 50 | 23, 49 | syldan 282 | 
. . . . . . . 8
          SubGrp                           
                                                                                               | 
| 51 | 13 | adantr 276 | 
. . . . . . . . . 10
          SubGrp                           
                                                                 | 
| 52 | 51 | fveq1d 5560 | 
. . . . . . . . 9
          SubGrp                           
                                                                             | 
| 53 | 52 | fveq2d 5562 | 
. . . . . . . 8
          SubGrp                           
                                                                                               | 
| 54 | 50, 53 | eqtrd 2229 | 
. . . . . . 7
          SubGrp                           
                                                                                               | 
| 55 | 54 | anassrs 400 | 
. . . . . 6
           SubGrp       
                                                                                                                  | 
| 56 |   | 0z 9337 | 
. . . . . . 7
        | 
| 57 | 19 | adantr 276 | 
. . . . . . 7
          SubGrp                            
            | 
| 58 |   | zdclt 9403 | 
. . . . . . 7
               
     DECID        | 
| 59 | 56, 57, 58 | sylancr 414 | 
. . . . . 6
          SubGrp                            
     DECID        | 
| 60 | 55, 59 | ifeq2dadc 3592 | 
. . . . 5
          SubGrp                            
                                                                                                                                                              | 
| 61 | 16, 60 | eqtrd 2229 | 
. . . 4
          SubGrp                            
                                                                                                                                                              | 
| 62 |   | 0zd 9338 | 
. . . . 5
         SubGrp                              | 
| 63 |   | zdceq 9401 | 
. . . . 5
               
     DECID        | 
| 64 | 19, 62, 63 | syl2anc 411 | 
. . . 4
         SubGrp                      
DECID  
     | 
| 65 | 61, 64 | ifeq2dadc 3592 | 
. . 3
         SubGrp                          
                      
                                                                                                                                                                | 
| 66 | 5, 65 | eqtrd 2229 | 
. 2
         SubGrp                          
                      
                                                                                                                                                                | 
| 67 | 32, 7, 2, 46, 38, 39 | mulgval 13252 | 
. . 3
               
                                                                                                                | 
| 68 | 19, 36, 67 | syl2anc 411 | 
. 2
         SubGrp                                                                                                                              | 
| 69 | 1 | subgbas 13308 | 
. . . . 5
        SubGrp     
           | 
| 70 | 69 | 3ad2ant1 1020 | 
. . . 4
         SubGrp                                  | 
| 71 | 35, 70 | eleqtrd 2275 | 
. . 3
         SubGrp                                  | 
| 72 |   | eqid 2196 | 
. . . 4
                | 
| 73 |   | eqid 2196 | 
. . . 4
                  | 
| 74 |   | eqid 2196 | 
. . . 4
                | 
| 75 |   | subgmulg.t | 
. . . 4
       .g    | 
| 76 |   | eqid 2196 | 
. . . 4
                                                | 
| 77 | 72, 73, 74, 47, 75, 76 | mulgval 13252 | 
. . 3
               
                                                                                                                | 
| 78 | 19, 71, 77 | syl2anc 411 | 
. 2
         SubGrp                                                                                                                              | 
| 79 | 66, 68, 78 | 3eqtr4d 2239 | 
1
         SubGrp                                          |