Proof of Theorem subgmulg
Step | Hyp | Ref
| Expression |
1 | | subgmulg.h |
. . . . . 6

↾s   |
2 | | eqid 2193 |
. . . . . 6
         |
3 | 1, 2 | subg0 13250 |
. . . . 5
 SubGrp 
          |
4 | 3 | 3ad2ant1 1020 |
. . . 4
  SubGrp             |
5 | 4 | ifeq1d 3574 |
. . 3
  SubGrp    
        
                                                                                                   |
6 | 1 | a1i 9 |
. . . . . . . . . . 11
 SubGrp 

↾s    |
7 | | eqid 2193 |
. . . . . . . . . . . 12
       |
8 | 7 | a1i 9 |
. . . . . . . . . . 11
 SubGrp 
        |
9 | | id 19 |
. . . . . . . . . . 11
 SubGrp 
SubGrp    |
10 | | subgrcl 13249 |
. . . . . . . . . . 11
 SubGrp 
  |
11 | 6, 8, 9, 10 | ressplusgd 12746 |
. . . . . . . . . 10
 SubGrp 
        |
12 | 11 | 3ad2ant1 1020 |
. . . . . . . . 9
  SubGrp           |
13 | 12 | seqeq2d 10525 |
. . . . . . . 8
  SubGrp                             |
14 | 13 | adantr 276 |
. . . . . . 7
   SubGrp  
                           |
15 | 14 | fveq1d 5556 |
. . . . . 6
   SubGrp  
                                 |
16 | 15 | ifeq1d 3574 |
. . . . 5
   SubGrp  
                                                                                             |
17 | | simprl 529 |
. . . . . . . . . 10
   SubGrp   
 
  |
18 | | simprr 531 |
. . . . . . . . . 10
   SubGrp   
    |
19 | | simp2 1000 |
. . . . . . . . . . . 12
  SubGrp     |
20 | | ztri3or0 9359 |
. . . . . . . . . . . 12
     |
21 | 19, 20 | syl 14 |
. . . . . . . . . . 11
  SubGrp       |
22 | 21 | adantr 276 |
. . . . . . . . . 10
   SubGrp   
      |
23 | 17, 18, 22 | ecase23d 1361 |
. . . . . . . . 9
   SubGrp   
    |
24 | | simpl1 1002 |
. . . . . . . . . 10
   SubGrp    SubGrp    |
25 | 19 | adantr 276 |
. . . . . . . . . . . . . 14
   SubGrp      |
26 | 25 | znegcld 9441 |
. . . . . . . . . . . . 13
   SubGrp       |
27 | 19 | zred 9439 |
. . . . . . . . . . . . . . 15
  SubGrp     |
28 | 27 | lt0neg1d 8534 |
. . . . . . . . . . . . . 14
  SubGrp   
    |
29 | 28 | biimpa 296 |
. . . . . . . . . . . . 13
   SubGrp       |
30 | | elnnz 9327 |
. . . . . . . . . . . . 13
 
      |
31 | 26, 29, 30 | sylanbrc 417 |
. . . . . . . . . . . 12
   SubGrp       |
32 | | eqid 2193 |
. . . . . . . . . . . . . . . 16
         |
33 | 32 | subgss 13244 |
. . . . . . . . . . . . . . 15
 SubGrp 
      |
34 | 33 | 3ad2ant1 1020 |
. . . . . . . . . . . . . 14
  SubGrp         |
35 | | simp3 1001 |
. . . . . . . . . . . . . 14
  SubGrp     |
36 | 34, 35 | sseldd 3180 |
. . . . . . . . . . . . 13
  SubGrp         |
37 | 36 | adantr 276 |
. . . . . . . . . . . 12
   SubGrp          |
38 | | subgmulgcl.t |
. . . . . . . . . . . . 13
.g   |
39 | | eqid 2193 |
. . . . . . . . . . . . 13
                         |
40 | 32, 7, 38, 39 | mulgnn 13196 |
. . . . . . . . . . . 12
                             |
41 | 31, 37, 40 | syl2anc 411 |
. . . . . . . . . . 11
   SubGrp                         |
42 | 35 | adantr 276 |
. . . . . . . . . . . 12
   SubGrp      |
43 | 38 | subgmulgcl 13257 |
. . . . . . . . . . . 12
  SubGrp         |
44 | 24, 26, 42, 43 | syl3anc 1249 |
. . . . . . . . . . 11
   SubGrp         |
45 | 41, 44 | eqeltrrd 2271 |
. . . . . . . . . 10
   SubGrp                      |
46 | | eqid 2193 |
. . . . . . . . . . 11
           |
47 | | eqid 2193 |
. . . . . . . . . . 11
           |
48 | 1, 46, 47 | subginv 13251 |
. . . . . . . . . 10
  SubGrp                  
                                                    |
49 | 24, 45, 48 | syl2anc 411 |
. . . . . . . . 9
   SubGrp                                                        |
50 | 23, 49 | syldan 282 |
. . . . . . . 8
   SubGrp   
                                                      |
51 | 13 | adantr 276 |
. . . . . . . . . 10
   SubGrp   
                            |
52 | 51 | fveq1d 5556 |
. . . . . . . . 9
   SubGrp   
                                    |
53 | 52 | fveq2d 5558 |
. . . . . . . 8
   SubGrp   
                                                      |
54 | 50, 53 | eqtrd 2226 |
. . . . . . 7
   SubGrp   
                                                      |
55 | 54 | anassrs 400 |
. . . . . 6
    SubGrp 
                                                       |
56 | | 0z 9328 |
. . . . . . 7
 |
57 | 19 | adantr 276 |
. . . . . . 7
   SubGrp  
   |
58 | | zdclt 9394 |
. . . . . . 7
 
 DECID   |
59 | 56, 57, 58 | sylancr 414 |
. . . . . 6
   SubGrp  
 DECID   |
60 | 55, 59 | ifeq2dadc 3588 |
. . . . 5
   SubGrp  
                                                                                             |
61 | 16, 60 | eqtrd 2226 |
. . . 4
   SubGrp  
                                                                                             |
62 | | 0zd 9329 |
. . . . 5
  SubGrp     |
63 | | zdceq 9392 |
. . . . 5
 
 DECID   |
64 | 19, 62, 63 | syl2anc 411 |
. . . 4
  SubGrp  
DECID
  |
65 | 61, 64 | ifeq2dadc 3588 |
. . 3
  SubGrp    
        
                                                                                                   |
66 | 5, 65 | eqtrd 2226 |
. 2
  SubGrp    
        
                                                                                                   |
67 | 32, 7, 2, 46, 38, 39 | mulgval 13192 |
. . 3
 
                                                               |
68 | 19, 36, 67 | syl2anc 411 |
. 2
  SubGrp                                                             |
69 | 1 | subgbas 13248 |
. . . . 5
 SubGrp 
      |
70 | 69 | 3ad2ant1 1020 |
. . . 4
  SubGrp         |
71 | 35, 70 | eleqtrd 2272 |
. . 3
  SubGrp         |
72 | | eqid 2193 |
. . . 4
         |
73 | | eqid 2193 |
. . . 4
       |
74 | | eqid 2193 |
. . . 4
         |
75 | | subgmulg.t |
. . . 4
.g   |
76 | | eqid 2193 |
. . . 4
                         |
77 | 72, 73, 74, 47, 75, 76 | mulgval 13192 |
. . 3
 
                                                               |
78 | 19, 71, 77 | syl2anc 411 |
. 2
  SubGrp                                                             |
79 | 66, 68, 78 | 3eqtr4d 2236 |
1
  SubGrp         |