Proof of Theorem subgmulg
| Step | Hyp | Ref
| Expression |
| 1 | | subgmulg.h |
. . . . . 6

↾s   |
| 2 | | eqid 2196 |
. . . . . 6
         |
| 3 | 1, 2 | subg0 13310 |
. . . . 5
 SubGrp 
          |
| 4 | 3 | 3ad2ant1 1020 |
. . . 4
  SubGrp             |
| 5 | 4 | ifeq1d 3578 |
. . 3
  SubGrp    
        
                                                                                                   |
| 6 | 1 | a1i 9 |
. . . . . . . . . . 11
 SubGrp 

↾s    |
| 7 | | eqid 2196 |
. . . . . . . . . . . 12
       |
| 8 | 7 | a1i 9 |
. . . . . . . . . . 11
 SubGrp 
        |
| 9 | | id 19 |
. . . . . . . . . . 11
 SubGrp 
SubGrp    |
| 10 | | subgrcl 13309 |
. . . . . . . . . . 11
 SubGrp 
  |
| 11 | 6, 8, 9, 10 | ressplusgd 12806 |
. . . . . . . . . 10
 SubGrp 
        |
| 12 | 11 | 3ad2ant1 1020 |
. . . . . . . . 9
  SubGrp           |
| 13 | 12 | seqeq2d 10546 |
. . . . . . . 8
  SubGrp                             |
| 14 | 13 | adantr 276 |
. . . . . . 7
   SubGrp  
                           |
| 15 | 14 | fveq1d 5560 |
. . . . . 6
   SubGrp  
                                 |
| 16 | 15 | ifeq1d 3578 |
. . . . 5
   SubGrp  
                                                                                             |
| 17 | | simprl 529 |
. . . . . . . . . 10
   SubGrp   
 
  |
| 18 | | simprr 531 |
. . . . . . . . . 10
   SubGrp   
    |
| 19 | | simp2 1000 |
. . . . . . . . . . . 12
  SubGrp     |
| 20 | | ztri3or0 9368 |
. . . . . . . . . . . 12
     |
| 21 | 19, 20 | syl 14 |
. . . . . . . . . . 11
  SubGrp       |
| 22 | 21 | adantr 276 |
. . . . . . . . . 10
   SubGrp   
      |
| 23 | 17, 18, 22 | ecase23d 1361 |
. . . . . . . . 9
   SubGrp   
    |
| 24 | | simpl1 1002 |
. . . . . . . . . 10
   SubGrp    SubGrp    |
| 25 | 19 | adantr 276 |
. . . . . . . . . . . . . 14
   SubGrp      |
| 26 | 25 | znegcld 9450 |
. . . . . . . . . . . . 13
   SubGrp       |
| 27 | 19 | zred 9448 |
. . . . . . . . . . . . . . 15
  SubGrp     |
| 28 | 27 | lt0neg1d 8542 |
. . . . . . . . . . . . . 14
  SubGrp   
    |
| 29 | 28 | biimpa 296 |
. . . . . . . . . . . . 13
   SubGrp       |
| 30 | | elnnz 9336 |
. . . . . . . . . . . . 13
 
      |
| 31 | 26, 29, 30 | sylanbrc 417 |
. . . . . . . . . . . 12
   SubGrp       |
| 32 | | eqid 2196 |
. . . . . . . . . . . . . . . 16
         |
| 33 | 32 | subgss 13304 |
. . . . . . . . . . . . . . 15
 SubGrp 
      |
| 34 | 33 | 3ad2ant1 1020 |
. . . . . . . . . . . . . 14
  SubGrp         |
| 35 | | simp3 1001 |
. . . . . . . . . . . . . 14
  SubGrp     |
| 36 | 34, 35 | sseldd 3184 |
. . . . . . . . . . . . 13
  SubGrp         |
| 37 | 36 | adantr 276 |
. . . . . . . . . . . 12
   SubGrp          |
| 38 | | subgmulgcl.t |
. . . . . . . . . . . . 13
.g   |
| 39 | | eqid 2196 |
. . . . . . . . . . . . 13
                         |
| 40 | 32, 7, 38, 39 | mulgnn 13256 |
. . . . . . . . . . . 12
                             |
| 41 | 31, 37, 40 | syl2anc 411 |
. . . . . . . . . . 11
   SubGrp                         |
| 42 | 35 | adantr 276 |
. . . . . . . . . . . 12
   SubGrp      |
| 43 | 38 | subgmulgcl 13317 |
. . . . . . . . . . . 12
  SubGrp         |
| 44 | 24, 26, 42, 43 | syl3anc 1249 |
. . . . . . . . . . 11
   SubGrp         |
| 45 | 41, 44 | eqeltrrd 2274 |
. . . . . . . . . 10
   SubGrp                      |
| 46 | | eqid 2196 |
. . . . . . . . . . 11
           |
| 47 | | eqid 2196 |
. . . . . . . . . . 11
           |
| 48 | 1, 46, 47 | subginv 13311 |
. . . . . . . . . 10
  SubGrp                  
                                                    |
| 49 | 24, 45, 48 | syl2anc 411 |
. . . . . . . . 9
   SubGrp                                                        |
| 50 | 23, 49 | syldan 282 |
. . . . . . . 8
   SubGrp   
                                                      |
| 51 | 13 | adantr 276 |
. . . . . . . . . 10
   SubGrp   
                            |
| 52 | 51 | fveq1d 5560 |
. . . . . . . . 9
   SubGrp   
                                    |
| 53 | 52 | fveq2d 5562 |
. . . . . . . 8
   SubGrp   
                                                      |
| 54 | 50, 53 | eqtrd 2229 |
. . . . . . 7
   SubGrp   
                                                      |
| 55 | 54 | anassrs 400 |
. . . . . 6
    SubGrp 
                                                       |
| 56 | | 0z 9337 |
. . . . . . 7
 |
| 57 | 19 | adantr 276 |
. . . . . . 7
   SubGrp  
   |
| 58 | | zdclt 9403 |
. . . . . . 7
 
 DECID   |
| 59 | 56, 57, 58 | sylancr 414 |
. . . . . 6
   SubGrp  
 DECID   |
| 60 | 55, 59 | ifeq2dadc 3592 |
. . . . 5
   SubGrp  
                                                                                             |
| 61 | 16, 60 | eqtrd 2229 |
. . . 4
   SubGrp  
                                                                                             |
| 62 | | 0zd 9338 |
. . . . 5
  SubGrp     |
| 63 | | zdceq 9401 |
. . . . 5
 
 DECID   |
| 64 | 19, 62, 63 | syl2anc 411 |
. . . 4
  SubGrp  
DECID
  |
| 65 | 61, 64 | ifeq2dadc 3592 |
. . 3
  SubGrp    
        
                                                                                                   |
| 66 | 5, 65 | eqtrd 2229 |
. 2
  SubGrp    
        
                                                                                                   |
| 67 | 32, 7, 2, 46, 38, 39 | mulgval 13252 |
. . 3
 
                                                               |
| 68 | 19, 36, 67 | syl2anc 411 |
. 2
  SubGrp                                                             |
| 69 | 1 | subgbas 13308 |
. . . . 5
 SubGrp 
      |
| 70 | 69 | 3ad2ant1 1020 |
. . . 4
  SubGrp         |
| 71 | 35, 70 | eleqtrd 2275 |
. . 3
  SubGrp         |
| 72 | | eqid 2196 |
. . . 4
         |
| 73 | | eqid 2196 |
. . . 4
       |
| 74 | | eqid 2196 |
. . . 4
         |
| 75 | | subgmulg.t |
. . . 4
.g   |
| 76 | | eqid 2196 |
. . . 4
                         |
| 77 | 72, 73, 74, 47, 75, 76 | mulgval 13252 |
. . 3
 
                                                               |
| 78 | 19, 71, 77 | syl2anc 411 |
. 2
  SubGrp                                                             |
| 79 | 66, 68, 78 | 3eqtr4d 2239 |
1
  SubGrp         |