ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgmulg Unicode version

Theorem subgmulg 13725
Description: A group multiple is the same if evaluated in a subgroup. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
subgmulgcl.t  |-  .x.  =  (.g
`  G )
subgmulg.h  |-  H  =  ( Gs  S )
subgmulg.t  |-  .xb  =  (.g
`  H )
Assertion
Ref Expression
subgmulg  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  .x.  X )  =  ( N  .xb  X
) )

Proof of Theorem subgmulg
StepHypRef Expression
1 subgmulg.h . . . . . 6  |-  H  =  ( Gs  S )
2 eqid 2229 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
31, 2subg0 13717 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  G )  =  ( 0g `  H ) )
433ad2ant1 1042 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( 0g `  G )  =  ( 0g `  H
) )
54ifeq1d 3620 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  if ( N  =  0 ,  ( 0g `  G ) ,  if ( 0  <  N ,  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  N
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) )  =  if ( N  =  0 ,  ( 0g `  H
) ,  if ( 0  <  N , 
(  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) ) )
61a1i 9 . . . . . . . . . . 11  |-  ( S  e.  (SubGrp `  G
)  ->  H  =  ( Gs  S ) )
7 eqid 2229 . . . . . . . . . . . 12  |-  ( +g  `  G )  =  ( +g  `  G )
87a1i 9 . . . . . . . . . . 11  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  G ) )
9 id 19 . . . . . . . . . . 11  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
10 subgrcl 13716 . . . . . . . . . . 11  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
116, 8, 9, 10ressplusgd 13162 . . . . . . . . . 10  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  H ) )
12113ad2ant1 1042 . . . . . . . . 9  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( +g  `  G )  =  ( +g  `  H
) )
1312seqeq2d 10676 . . . . . . . 8  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) )  =  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) )
1413adantr 276 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  -.  N  =  0 )  ->  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) )  =  seq 1 ( ( +g  `  H
) ,  ( NN 
X.  { X }
) ) )
1514fveq1d 5629 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  -.  N  =  0 )  ->  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  N
)  =  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  N ) )
1615ifeq1d 3620 . . . . 5  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  -.  N  =  0 )  ->  if ( 0  <  N ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )  =  if ( 0  <  N ,  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) )
17 simprl 529 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  -.  N  =  0 )
18 simprr 531 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  -.  0  <  N )
19 simp2 1022 . . . . . . . . . . . 12  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  N  e.  ZZ )
20 ztri3or0 9488 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( N  <  0  \/  N  =  0  \/  0  <  N ) )
2119, 20syl 14 . . . . . . . . . . 11  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  <  0  \/  N  =  0  \/  0  <  N ) )
2221adantr 276 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  ( N  <  0  \/  N  =  0  \/  0  <  N ) )
2317, 18, 22ecase23d 1384 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  N  <  0 )
24 simpl1 1024 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  S  e.  (SubGrp `  G )
)
2519adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  N  e.  ZZ )
2625znegcld 9571 . . . . . . . . . . . . 13  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  -u N  e.  ZZ )
2719zred 9569 . . . . . . . . . . . . . . 15  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  N  e.  RR )
2827lt0neg1d 8662 . . . . . . . . . . . . . 14  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  <  0  <->  0  <  -u N ) )
2928biimpa 296 . . . . . . . . . . . . 13  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  0  <  -u N )
30 elnnz 9456 . . . . . . . . . . . . 13  |-  ( -u N  e.  NN  <->  ( -u N  e.  ZZ  /\  0  <  -u N ) )
3126, 29, 30sylanbrc 417 . . . . . . . . . . . 12  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  -u N  e.  NN )
32 eqid 2229 . . . . . . . . . . . . . . . 16  |-  ( Base `  G )  =  (
Base `  G )
3332subgss 13711 . . . . . . . . . . . . . . 15  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  ( Base `  G ) )
34333ad2ant1 1042 . . . . . . . . . . . . . 14  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  S  C_  ( Base `  G
) )
35 simp3 1023 . . . . . . . . . . . . . 14  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  X  e.  S )
3634, 35sseldd 3225 . . . . . . . . . . . . 13  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  X  e.  ( Base `  G
) )
3736adantr 276 . . . . . . . . . . . 12  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  X  e.  ( Base `  G
) )
38 subgmulgcl.t . . . . . . . . . . . . 13  |-  .x.  =  (.g
`  G )
39 eqid 2229 . . . . . . . . . . . . 13  |-  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) )  =  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) )
4032, 7, 38, 39mulgnn 13663 . . . . . . . . . . . 12  |-  ( (
-u N  e.  NN  /\  X  e.  ( Base `  G ) )  -> 
( -u N  .x.  X
)  =  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) )
4131, 37, 40syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  ( -u N  .x.  X )  =  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  -u N
) )
4235adantr 276 . . . . . . . . . . . 12  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  X  e.  S )
4338subgmulgcl 13724 . . . . . . . . . . . 12  |-  ( ( S  e.  (SubGrp `  G )  /\  -u N  e.  ZZ  /\  X  e.  S )  ->  ( -u N  .x.  X )  e.  S )
4424, 26, 42, 43syl3anc 1271 . . . . . . . . . . 11  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  ( -u N  .x.  X )  e.  S )
4541, 44eqeltrrd 2307 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N )  e.  S
)
46 eqid 2229 . . . . . . . . . . 11  |-  ( invg `  G )  =  ( invg `  G )
47 eqid 2229 . . . . . . . . . . 11  |-  ( invg `  H )  =  ( invg `  H )
481, 46, 47subginv 13718 . . . . . . . . . 10  |-  ( ( S  e.  (SubGrp `  G )  /\  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N )  e.  S
)  ->  ( ( invg `  G ) `
 (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  -u N
) )  =  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )
4924, 45, 48syl2anc 411 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  (
( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) )  =  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )
5023, 49syldan 282 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  (
( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) )  =  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )
5113adantr 276 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) )  =  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) )
5251fveq1d 5629 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N )  =  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 -u N ) )
5352fveq2d 5631 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  (
( invg `  H ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) )  =  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )
5450, 53eqtrd 2262 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  (
( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) )  =  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )
5554anassrs 400 . . . . . 6  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  -.  N  =  0 )  /\  -.  0  <  N )  -> 
( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) )  =  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )
56 0z 9457 . . . . . . 7  |-  0  e.  ZZ
5719adantr 276 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  -.  N  =  0 )  ->  N  e.  ZZ )
58 zdclt 9524 . . . . . . 7  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  -> DECID  0  <  N )
5956, 57, 58sylancr 414 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  -.  N  =  0 )  -> DECID  0  <  N )
6055, 59ifeq2dadc 3634 . . . . 5  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  -.  N  =  0 )  ->  if ( 0  <  N ,  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )  =  if ( 0  <  N ,  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) )
6116, 60eqtrd 2262 . . . 4  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  -.  N  =  0 )  ->  if ( 0  <  N ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )  =  if ( 0  <  N ,  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) )
62 0zd 9458 . . . . 5  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  0  e.  ZZ )
63 zdceq 9522 . . . . 5  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
6419, 62, 63syl2anc 411 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  -> DECID  N  =  0
)
6561, 64ifeq2dadc 3634 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  if ( N  =  0 ,  ( 0g `  H ) ,  if ( 0  <  N ,  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  N
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) )  =  if ( N  =  0 ,  ( 0g `  H
) ,  if ( 0  <  N , 
(  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) ) )
665, 65eqtrd 2262 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  if ( N  =  0 ,  ( 0g `  G ) ,  if ( 0  <  N ,  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  N
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) )  =  if ( N  =  0 ,  ( 0g `  H
) ,  if ( 0  <  N , 
(  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) ) )
6732, 7, 2, 46, 38, 39mulgval 13659 . . 3  |-  ( ( N  e.  ZZ  /\  X  e.  ( Base `  G ) )  -> 
( N  .x.  X
)  =  if ( N  =  0 ,  ( 0g `  G
) ,  if ( 0  <  N , 
(  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) ) )
6819, 36, 67syl2anc 411 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  .x.  X )  =  if ( N  =  0 ,  ( 0g
`  G ) ,  if ( 0  < 
N ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  N ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) ) )
691subgbas 13715 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  =  ( Base `  H )
)
70693ad2ant1 1042 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  S  =  ( Base `  H
) )
7135, 70eleqtrd 2308 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  X  e.  ( Base `  H
) )
72 eqid 2229 . . . 4  |-  ( Base `  H )  =  (
Base `  H )
73 eqid 2229 . . . 4  |-  ( +g  `  H )  =  ( +g  `  H )
74 eqid 2229 . . . 4  |-  ( 0g
`  H )  =  ( 0g `  H
)
75 subgmulg.t . . . 4  |-  .xb  =  (.g
`  H )
76 eqid 2229 . . . 4  |-  seq 1
( ( +g  `  H
) ,  ( NN 
X.  { X }
) )  =  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) )
7772, 73, 74, 47, 75, 76mulgval 13659 . . 3  |-  ( ( N  e.  ZZ  /\  X  e.  ( Base `  H ) )  -> 
( N  .xb  X
)  =  if ( N  =  0 ,  ( 0g `  H
) ,  if ( 0  <  N , 
(  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) ) )
7819, 71, 77syl2anc 411 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  .xb  X )  =  if ( N  =  0 ,  ( 0g
`  H ) ,  if ( 0  < 
N ,  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  N ) ,  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) ) )
7966, 68, 783eqtr4d 2272 1  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  .x.  X )  =  ( N  .xb  X
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 839    \/ w3o 1001    /\ w3a 1002    = wceq 1395    e. wcel 2200    C_ wss 3197   ifcif 3602   {csn 3666   class class class wbr 4083    X. cxp 4717   ` cfv 5318  (class class class)co 6001   0cc0 7999   1c1 8000    < clt 8181   -ucneg 8318   NNcn 9110   ZZcz 9446    seqcseq 10669   Basecbs 13032   ↾s cress 13033   +g cplusg 13110   0gc0g 13289   Grpcgrp 13533   invgcminusg 13534  .gcmg 13656  SubGrpcsubg 13704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-2 9169  df-n0 9370  df-z 9447  df-uz 9723  df-seqfrec 10670  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040  df-plusg 13123  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-mulg 13657  df-subg 13707
This theorem is referenced by:  zringmulg  14562
  Copyright terms: Public domain W3C validator