ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgmulg Unicode version

Theorem subgmulg 13394
Description: A group multiple is the same if evaluated in a subgroup. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
subgmulgcl.t  |-  .x.  =  (.g
`  G )
subgmulg.h  |-  H  =  ( Gs  S )
subgmulg.t  |-  .xb  =  (.g
`  H )
Assertion
Ref Expression
subgmulg  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  .x.  X )  =  ( N  .xb  X
) )

Proof of Theorem subgmulg
StepHypRef Expression
1 subgmulg.h . . . . . 6  |-  H  =  ( Gs  S )
2 eqid 2196 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
31, 2subg0 13386 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  G )  =  ( 0g `  H ) )
433ad2ant1 1020 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( 0g `  G )  =  ( 0g `  H
) )
54ifeq1d 3579 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  if ( N  =  0 ,  ( 0g `  G ) ,  if ( 0  <  N ,  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  N
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) )  =  if ( N  =  0 ,  ( 0g `  H
) ,  if ( 0  <  N , 
(  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) ) )
61a1i 9 . . . . . . . . . . 11  |-  ( S  e.  (SubGrp `  G
)  ->  H  =  ( Gs  S ) )
7 eqid 2196 . . . . . . . . . . . 12  |-  ( +g  `  G )  =  ( +g  `  G )
87a1i 9 . . . . . . . . . . 11  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  G ) )
9 id 19 . . . . . . . . . . 11  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
10 subgrcl 13385 . . . . . . . . . . 11  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
116, 8, 9, 10ressplusgd 12831 . . . . . . . . . 10  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  H ) )
12113ad2ant1 1020 . . . . . . . . 9  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( +g  `  G )  =  ( +g  `  H
) )
1312seqeq2d 10563 . . . . . . . 8  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) )  =  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) )
1413adantr 276 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  -.  N  =  0 )  ->  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) )  =  seq 1 ( ( +g  `  H
) ,  ( NN 
X.  { X }
) ) )
1514fveq1d 5563 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  -.  N  =  0 )  ->  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  N
)  =  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  N ) )
1615ifeq1d 3579 . . . . 5  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  -.  N  =  0 )  ->  if ( 0  <  N ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )  =  if ( 0  <  N ,  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) )
17 simprl 529 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  -.  N  =  0 )
18 simprr 531 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  -.  0  <  N )
19 simp2 1000 . . . . . . . . . . . 12  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  N  e.  ZZ )
20 ztri3or0 9385 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( N  <  0  \/  N  =  0  \/  0  <  N ) )
2119, 20syl 14 . . . . . . . . . . 11  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  <  0  \/  N  =  0  \/  0  <  N ) )
2221adantr 276 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  ( N  <  0  \/  N  =  0  \/  0  <  N ) )
2317, 18, 22ecase23d 1361 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  N  <  0 )
24 simpl1 1002 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  S  e.  (SubGrp `  G )
)
2519adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  N  e.  ZZ )
2625znegcld 9467 . . . . . . . . . . . . 13  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  -u N  e.  ZZ )
2719zred 9465 . . . . . . . . . . . . . . 15  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  N  e.  RR )
2827lt0neg1d 8559 . . . . . . . . . . . . . 14  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  <  0  <->  0  <  -u N ) )
2928biimpa 296 . . . . . . . . . . . . 13  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  0  <  -u N )
30 elnnz 9353 . . . . . . . . . . . . 13  |-  ( -u N  e.  NN  <->  ( -u N  e.  ZZ  /\  0  <  -u N ) )
3126, 29, 30sylanbrc 417 . . . . . . . . . . . 12  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  -u N  e.  NN )
32 eqid 2196 . . . . . . . . . . . . . . . 16  |-  ( Base `  G )  =  (
Base `  G )
3332subgss 13380 . . . . . . . . . . . . . . 15  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  ( Base `  G ) )
34333ad2ant1 1020 . . . . . . . . . . . . . 14  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  S  C_  ( Base `  G
) )
35 simp3 1001 . . . . . . . . . . . . . 14  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  X  e.  S )
3634, 35sseldd 3185 . . . . . . . . . . . . 13  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  X  e.  ( Base `  G
) )
3736adantr 276 . . . . . . . . . . . 12  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  X  e.  ( Base `  G
) )
38 subgmulgcl.t . . . . . . . . . . . . 13  |-  .x.  =  (.g
`  G )
39 eqid 2196 . . . . . . . . . . . . 13  |-  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) )  =  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) )
4032, 7, 38, 39mulgnn 13332 . . . . . . . . . . . 12  |-  ( (
-u N  e.  NN  /\  X  e.  ( Base `  G ) )  -> 
( -u N  .x.  X
)  =  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) )
4131, 37, 40syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  ( -u N  .x.  X )  =  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  -u N
) )
4235adantr 276 . . . . . . . . . . . 12  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  X  e.  S )
4338subgmulgcl 13393 . . . . . . . . . . . 12  |-  ( ( S  e.  (SubGrp `  G )  /\  -u N  e.  ZZ  /\  X  e.  S )  ->  ( -u N  .x.  X )  e.  S )
4424, 26, 42, 43syl3anc 1249 . . . . . . . . . . 11  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  ( -u N  .x.  X )  e.  S )
4541, 44eqeltrrd 2274 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N )  e.  S
)
46 eqid 2196 . . . . . . . . . . 11  |-  ( invg `  G )  =  ( invg `  G )
47 eqid 2196 . . . . . . . . . . 11  |-  ( invg `  H )  =  ( invg `  H )
481, 46, 47subginv 13387 . . . . . . . . . 10  |-  ( ( S  e.  (SubGrp `  G )  /\  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N )  e.  S
)  ->  ( ( invg `  G ) `
 (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  -u N
) )  =  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )
4924, 45, 48syl2anc 411 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  (
( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) )  =  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )
5023, 49syldan 282 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  (
( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) )  =  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )
5113adantr 276 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) )  =  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) )
5251fveq1d 5563 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N )  =  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 -u N ) )
5352fveq2d 5565 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  (
( invg `  H ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) )  =  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )
5450, 53eqtrd 2229 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  (
( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) )  =  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )
5554anassrs 400 . . . . . 6  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  -.  N  =  0 )  /\  -.  0  <  N )  -> 
( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) )  =  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )
56 0z 9354 . . . . . . 7  |-  0  e.  ZZ
5719adantr 276 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  -.  N  =  0 )  ->  N  e.  ZZ )
58 zdclt 9420 . . . . . . 7  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  -> DECID  0  <  N )
5956, 57, 58sylancr 414 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  -.  N  =  0 )  -> DECID  0  <  N )
6055, 59ifeq2dadc 3593 . . . . 5  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  -.  N  =  0 )  ->  if ( 0  <  N ,  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )  =  if ( 0  <  N ,  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) )
6116, 60eqtrd 2229 . . . 4  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  -.  N  =  0 )  ->  if ( 0  <  N ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )  =  if ( 0  <  N ,  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) )
62 0zd 9355 . . . . 5  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  0  e.  ZZ )
63 zdceq 9418 . . . . 5  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
6419, 62, 63syl2anc 411 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  -> DECID  N  =  0
)
6561, 64ifeq2dadc 3593 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  if ( N  =  0 ,  ( 0g `  H ) ,  if ( 0  <  N ,  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  N
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) )  =  if ( N  =  0 ,  ( 0g `  H
) ,  if ( 0  <  N , 
(  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) ) )
665, 65eqtrd 2229 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  if ( N  =  0 ,  ( 0g `  G ) ,  if ( 0  <  N ,  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  N
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) )  =  if ( N  =  0 ,  ( 0g `  H
) ,  if ( 0  <  N , 
(  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) ) )
6732, 7, 2, 46, 38, 39mulgval 13328 . . 3  |-  ( ( N  e.  ZZ  /\  X  e.  ( Base `  G ) )  -> 
( N  .x.  X
)  =  if ( N  =  0 ,  ( 0g `  G
) ,  if ( 0  <  N , 
(  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) ) )
6819, 36, 67syl2anc 411 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  .x.  X )  =  if ( N  =  0 ,  ( 0g
`  G ) ,  if ( 0  < 
N ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  N ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) ) )
691subgbas 13384 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  =  ( Base `  H )
)
70693ad2ant1 1020 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  S  =  ( Base `  H
) )
7135, 70eleqtrd 2275 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  X  e.  ( Base `  H
) )
72 eqid 2196 . . . 4  |-  ( Base `  H )  =  (
Base `  H )
73 eqid 2196 . . . 4  |-  ( +g  `  H )  =  ( +g  `  H )
74 eqid 2196 . . . 4  |-  ( 0g
`  H )  =  ( 0g `  H
)
75 subgmulg.t . . . 4  |-  .xb  =  (.g
`  H )
76 eqid 2196 . . . 4  |-  seq 1
( ( +g  `  H
) ,  ( NN 
X.  { X }
) )  =  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) )
7772, 73, 74, 47, 75, 76mulgval 13328 . . 3  |-  ( ( N  e.  ZZ  /\  X  e.  ( Base `  H ) )  -> 
( N  .xb  X
)  =  if ( N  =  0 ,  ( 0g `  H
) ,  if ( 0  <  N , 
(  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) ) )
7819, 71, 77syl2anc 411 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  .xb  X )  =  if ( N  =  0 ,  ( 0g
`  H ) ,  if ( 0  < 
N ,  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  N ) ,  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) ) )
7966, 68, 783eqtr4d 2239 1  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  .x.  X )  =  ( N  .xb  X
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 835    \/ w3o 979    /\ w3a 980    = wceq 1364    e. wcel 2167    C_ wss 3157   ifcif 3562   {csn 3623   class class class wbr 4034    X. cxp 4662   ` cfv 5259  (class class class)co 5925   0cc0 7896   1c1 7897    < clt 8078   -ucneg 8215   NNcn 9007   ZZcz 9343    seqcseq 10556   Basecbs 12703   ↾s cress 12704   +g cplusg 12780   0gc0g 12958   Grpcgrp 13202   invgcminusg 13203  .gcmg 13325  SubGrpcsubg 13373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-uz 9619  df-seqfrec 10557  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-mulg 13326  df-subg 13376
This theorem is referenced by:  zringmulg  14230
  Copyright terms: Public domain W3C validator