ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgmulg Unicode version

Theorem subgmulg 13258
Description: A group multiple is the same if evaluated in a subgroup. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
subgmulgcl.t  |-  .x.  =  (.g
`  G )
subgmulg.h  |-  H  =  ( Gs  S )
subgmulg.t  |-  .xb  =  (.g
`  H )
Assertion
Ref Expression
subgmulg  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  .x.  X )  =  ( N  .xb  X
) )

Proof of Theorem subgmulg
StepHypRef Expression
1 subgmulg.h . . . . . 6  |-  H  =  ( Gs  S )
2 eqid 2193 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
31, 2subg0 13250 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  G )  =  ( 0g `  H ) )
433ad2ant1 1020 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( 0g `  G )  =  ( 0g `  H
) )
54ifeq1d 3574 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  if ( N  =  0 ,  ( 0g `  G ) ,  if ( 0  <  N ,  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  N
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) )  =  if ( N  =  0 ,  ( 0g `  H
) ,  if ( 0  <  N , 
(  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) ) )
61a1i 9 . . . . . . . . . . 11  |-  ( S  e.  (SubGrp `  G
)  ->  H  =  ( Gs  S ) )
7 eqid 2193 . . . . . . . . . . . 12  |-  ( +g  `  G )  =  ( +g  `  G )
87a1i 9 . . . . . . . . . . 11  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  G ) )
9 id 19 . . . . . . . . . . 11  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
10 subgrcl 13249 . . . . . . . . . . 11  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
116, 8, 9, 10ressplusgd 12746 . . . . . . . . . 10  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  H ) )
12113ad2ant1 1020 . . . . . . . . 9  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( +g  `  G )  =  ( +g  `  H
) )
1312seqeq2d 10525 . . . . . . . 8  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) )  =  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) )
1413adantr 276 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  -.  N  =  0 )  ->  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) )  =  seq 1 ( ( +g  `  H
) ,  ( NN 
X.  { X }
) ) )
1514fveq1d 5556 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  -.  N  =  0 )  ->  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  N
)  =  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  N ) )
1615ifeq1d 3574 . . . . 5  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  -.  N  =  0 )  ->  if ( 0  <  N ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )  =  if ( 0  <  N ,  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) )
17 simprl 529 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  -.  N  =  0 )
18 simprr 531 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  -.  0  <  N )
19 simp2 1000 . . . . . . . . . . . 12  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  N  e.  ZZ )
20 ztri3or0 9359 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( N  <  0  \/  N  =  0  \/  0  <  N ) )
2119, 20syl 14 . . . . . . . . . . 11  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  <  0  \/  N  =  0  \/  0  <  N ) )
2221adantr 276 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  ( N  <  0  \/  N  =  0  \/  0  <  N ) )
2317, 18, 22ecase23d 1361 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  N  <  0 )
24 simpl1 1002 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  S  e.  (SubGrp `  G )
)
2519adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  N  e.  ZZ )
2625znegcld 9441 . . . . . . . . . . . . 13  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  -u N  e.  ZZ )
2719zred 9439 . . . . . . . . . . . . . . 15  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  N  e.  RR )
2827lt0neg1d 8534 . . . . . . . . . . . . . 14  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  <  0  <->  0  <  -u N ) )
2928biimpa 296 . . . . . . . . . . . . 13  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  0  <  -u N )
30 elnnz 9327 . . . . . . . . . . . . 13  |-  ( -u N  e.  NN  <->  ( -u N  e.  ZZ  /\  0  <  -u N ) )
3126, 29, 30sylanbrc 417 . . . . . . . . . . . 12  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  -u N  e.  NN )
32 eqid 2193 . . . . . . . . . . . . . . . 16  |-  ( Base `  G )  =  (
Base `  G )
3332subgss 13244 . . . . . . . . . . . . . . 15  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  ( Base `  G ) )
34333ad2ant1 1020 . . . . . . . . . . . . . 14  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  S  C_  ( Base `  G
) )
35 simp3 1001 . . . . . . . . . . . . . 14  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  X  e.  S )
3634, 35sseldd 3180 . . . . . . . . . . . . 13  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  X  e.  ( Base `  G
) )
3736adantr 276 . . . . . . . . . . . 12  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  X  e.  ( Base `  G
) )
38 subgmulgcl.t . . . . . . . . . . . . 13  |-  .x.  =  (.g
`  G )
39 eqid 2193 . . . . . . . . . . . . 13  |-  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) )  =  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) )
4032, 7, 38, 39mulgnn 13196 . . . . . . . . . . . 12  |-  ( (
-u N  e.  NN  /\  X  e.  ( Base `  G ) )  -> 
( -u N  .x.  X
)  =  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) )
4131, 37, 40syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  ( -u N  .x.  X )  =  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  -u N
) )
4235adantr 276 . . . . . . . . . . . 12  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  X  e.  S )
4338subgmulgcl 13257 . . . . . . . . . . . 12  |-  ( ( S  e.  (SubGrp `  G )  /\  -u N  e.  ZZ  /\  X  e.  S )  ->  ( -u N  .x.  X )  e.  S )
4424, 26, 42, 43syl3anc 1249 . . . . . . . . . . 11  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  ( -u N  .x.  X )  e.  S )
4541, 44eqeltrrd 2271 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N )  e.  S
)
46 eqid 2193 . . . . . . . . . . 11  |-  ( invg `  G )  =  ( invg `  G )
47 eqid 2193 . . . . . . . . . . 11  |-  ( invg `  H )  =  ( invg `  H )
481, 46, 47subginv 13251 . . . . . . . . . 10  |-  ( ( S  e.  (SubGrp `  G )  /\  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N )  e.  S
)  ->  ( ( invg `  G ) `
 (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  -u N
) )  =  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )
4924, 45, 48syl2anc 411 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  <  0 )  ->  (
( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) )  =  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )
5023, 49syldan 282 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  (
( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) )  =  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )
5113adantr 276 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) )  =  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) )
5251fveq1d 5556 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N )  =  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 -u N ) )
5352fveq2d 5558 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  (
( invg `  H ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) )  =  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )
5450, 53eqtrd 2226 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( -.  N  =  0  /\  -.  0  <  N
) )  ->  (
( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) )  =  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )
5554anassrs 400 . . . . . 6  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  -.  N  =  0 )  /\  -.  0  <  N )  -> 
( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) )  =  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )
56 0z 9328 . . . . . . 7  |-  0  e.  ZZ
5719adantr 276 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  -.  N  =  0 )  ->  N  e.  ZZ )
58 zdclt 9394 . . . . . . 7  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  -> DECID  0  <  N )
5956, 57, 58sylancr 414 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  -.  N  =  0 )  -> DECID  0  <  N )
6055, 59ifeq2dadc 3588 . . . . 5  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  -.  N  =  0 )  ->  if ( 0  <  N ,  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )  =  if ( 0  <  N ,  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) )
6116, 60eqtrd 2226 . . . 4  |-  ( ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  /\  -.  N  =  0 )  ->  if ( 0  <  N ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) )  =  if ( 0  <  N ,  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) )
62 0zd 9329 . . . . 5  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  0  e.  ZZ )
63 zdceq 9392 . . . . 5  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
6419, 62, 63syl2anc 411 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  -> DECID  N  =  0
)
6561, 64ifeq2dadc 3588 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  if ( N  =  0 ,  ( 0g `  H ) ,  if ( 0  <  N ,  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  N
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) )  =  if ( N  =  0 ,  ( 0g `  H
) ,  if ( 0  <  N , 
(  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) ) )
665, 65eqtrd 2226 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  if ( N  =  0 ,  ( 0g `  G ) ,  if ( 0  <  N ,  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  N
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) )  =  if ( N  =  0 ,  ( 0g `  H
) ,  if ( 0  <  N , 
(  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) ) )
6732, 7, 2, 46, 38, 39mulgval 13192 . . 3  |-  ( ( N  e.  ZZ  /\  X  e.  ( Base `  G ) )  -> 
( N  .x.  X
)  =  if ( N  =  0 ,  ( 0g `  G
) ,  if ( 0  <  N , 
(  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) ) )
6819, 36, 67syl2anc 411 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  .x.  X )  =  if ( N  =  0 ,  ( 0g
`  G ) ,  if ( 0  < 
N ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  N ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) ) )
691subgbas 13248 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  =  ( Base `  H )
)
70693ad2ant1 1020 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  S  =  ( Base `  H
) )
7135, 70eleqtrd 2272 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  X  e.  ( Base `  H
) )
72 eqid 2193 . . . 4  |-  ( Base `  H )  =  (
Base `  H )
73 eqid 2193 . . . 4  |-  ( +g  `  H )  =  ( +g  `  H )
74 eqid 2193 . . . 4  |-  ( 0g
`  H )  =  ( 0g `  H
)
75 subgmulg.t . . . 4  |-  .xb  =  (.g
`  H )
76 eqid 2193 . . . 4  |-  seq 1
( ( +g  `  H
) ,  ( NN 
X.  { X }
) )  =  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) )
7772, 73, 74, 47, 75, 76mulgval 13192 . . 3  |-  ( ( N  e.  ZZ  /\  X  e.  ( Base `  H ) )  -> 
( N  .xb  X
)  =  if ( N  =  0 ,  ( 0g `  H
) ,  if ( 0  <  N , 
(  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `
 N ) ,  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) ) )
7819, 71, 77syl2anc 411 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  .xb  X )  =  if ( N  =  0 ,  ( 0g
`  H ) ,  if ( 0  < 
N ,  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  N ) ,  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { X } ) ) `  -u N ) ) ) ) )
7966, 68, 783eqtr4d 2236 1  |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  .x.  X )  =  ( N  .xb  X
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 835    \/ w3o 979    /\ w3a 980    = wceq 1364    e. wcel 2164    C_ wss 3153   ifcif 3557   {csn 3618   class class class wbr 4029    X. cxp 4657   ` cfv 5254  (class class class)co 5918   0cc0 7872   1c1 7873    < clt 8054   -ucneg 8191   NNcn 8982   ZZcz 9317    seqcseq 10518   Basecbs 12618   ↾s cress 12619   +g cplusg 12695   0gc0g 12867   Grpcgrp 13072   invgcminusg 13073  .gcmg 13189  SubGrpcsubg 13237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-seqfrec 10519  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-mulg 13190  df-subg 13240
This theorem is referenced by:  zringmulg  14086
  Copyright terms: Public domain W3C validator