ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxifle Unicode version

Theorem xrmaxifle 11557
Description: An upper bound for  { A ,  B } in the extended reals. (Contributed by Jim Kingdon, 26-Apr-2023.)
Assertion
Ref Expression
xrmaxifle  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A  <_  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )

Proof of Theorem xrmaxifle
StepHypRef Expression
1 pnfge 9911 . . . 4  |-  ( A  e.  RR*  ->  A  <_ +oo )
21ad2antrr 488 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  A  <_ +oo )
3 simpr 110 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  B  = +oo )
43iftrued 3578 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) )  = +oo )
52, 4breqtrrd 4072 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  A  <_  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )
6 xrleid 9922 . . . . . 6  |-  ( A  e.  RR*  ->  A  <_  A )
76ad3antrrr 492 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  -.  B  = +oo )  /\  B  = -oo )  ->  A  <_  A )
8 simpr 110 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  -.  B  = +oo )  /\  B  = -oo )  ->  B  = -oo )
98iftrued 3578 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  -.  B  = +oo )  /\  B  = -oo )  ->  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) )  =  A )
107, 9breqtrrd 4072 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  -.  B  = +oo )  /\  B  = -oo )  ->  A  <_  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) )
111ad4antr 494 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  A  = +oo )  ->  A  <_ +oo )
12 simpr 110 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  A  = +oo )  ->  A  = +oo )
1312iftrued 3578 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  A  = +oo )  ->  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) )  = +oo )
1411, 13breqtrrd 4072 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  A  = +oo )  ->  A  <_  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) )
15 mnfle 9914 . . . . . . . . . 10  |-  ( B  e.  RR*  -> -oo  <_  B )
1615ad5antlr 497 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  A  = -oo )  -> -oo  <_  B )
17 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  A  = -oo )  ->  A  = -oo )
1817iftrued 3578 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  A  = -oo )  ->  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
)  =  B )
1916, 17, 183brtr4d 4076 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  A  = -oo )  ->  A  <_  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) )
20 simplr 528 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  A  = +oo )
21 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  A  = -oo )
22 elxr 9898 . . . . . . . . . . . . 13  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2322biimpi 120 . . . . . . . . . . . 12  |-  ( A  e.  RR*  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2423ad5antr 496 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2520, 21, 24ecase23d 1363 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  A  e.  RR )
26 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  B  = +oo )  ->  -.  B  = +oo )
2726ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  B  = +oo )
28 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  -.  B  = -oo )
2928ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  -.  B  = -oo )
30 elxr 9898 . . . . . . . . . . . . 13  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
3130biimpi 120 . . . . . . . . . . . 12  |-  ( B  e.  RR*  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
3231ad5antlr 497 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
3327, 29, 32ecase23d 1363 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  B  e.  RR )
34 maxle1 11522 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  <_  sup ( { A ,  B } ,  RR ,  <  )
)
3525, 33, 34syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  A  <_  sup ( { A ,  B } ,  RR ,  <  )
)
3621iffalsed 3581 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) )  =  sup ( { A ,  B } ,  RR ,  <  ) )
3735, 36breqtrrd 4072 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  A  <_  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) )
38 xrmnfdc 9965 . . . . . . . . . 10  |-  ( A  e.  RR*  -> DECID  A  = -oo )
39 exmiddc 838 . . . . . . . . . 10  |-  (DECID  A  = -oo  ->  ( A  = -oo  \/  -.  A  = -oo ) )
4038, 39syl 14 . . . . . . . . 9  |-  ( A  e.  RR*  ->  ( A  = -oo  \/  -.  A  = -oo )
)
4140ad4antr 494 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  ->  ( A  = -oo  \/  -.  A  = -oo )
)
4219, 37, 41mpjaodan 800 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  ->  A  <_  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) )
43 simpr 110 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  ->  -.  A  = +oo )
4443iffalsed 3581 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  ->  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) )  =  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) )
4542, 44breqtrrd 4072 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  /\  -.  A  = +oo )  ->  A  <_  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) )
46 xrpnfdc 9964 . . . . . . . 8  |-  ( A  e.  RR*  -> DECID  A  = +oo )
47 exmiddc 838 . . . . . . . 8  |-  (DECID  A  = +oo  ->  ( A  = +oo  \/  -.  A  = +oo ) )
4846, 47syl 14 . . . . . . 7  |-  ( A  e.  RR*  ->  ( A  = +oo  \/  -.  A  = +oo )
)
4948ad3antrrr 492 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  ( A  = +oo  \/  -.  A  = +oo ) )
5014, 45, 49mpjaodan 800 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  A  <_  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) )
5128iffalsed 3581 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) )  =  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) )
5250, 51breqtrrd 4072 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  A  <_  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) )
53 xrmnfdc 9965 . . . . . 6  |-  ( B  e.  RR*  -> DECID  B  = -oo )
54 exmiddc 838 . . . . . 6  |-  (DECID  B  = -oo  ->  ( B  = -oo  \/  -.  B  = -oo ) )
5553, 54syl 14 . . . . 5  |-  ( B  e.  RR*  ->  ( B  = -oo  \/  -.  B  = -oo )
)
5655ad2antlr 489 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  B  = +oo )  ->  ( B  = -oo  \/  -.  B  = -oo ) )
5710, 52, 56mpjaodan 800 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  B  = +oo )  ->  A  <_  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )
5826iffalsed 3581 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  B  = +oo )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) )  =  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
) ) ) )
5957, 58breqtrrd 4072 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  B  = +oo )  ->  A  <_  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )
60 xrpnfdc 9964 . . . 4  |-  ( B  e.  RR*  -> DECID  B  = +oo )
61 exmiddc 838 . . . 4  |-  (DECID  B  = +oo  ->  ( B  = +oo  \/  -.  B  = +oo ) )
6260, 61syl 14 . . 3  |-  ( B  e.  RR*  ->  ( B  = +oo  \/  -.  B  = +oo )
)
6362adantl 277 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  = +oo  \/  -.  B  = +oo )
)
645, 59, 63mpjaodan 800 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A  <_  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710  DECID wdc 836    \/ w3o 980    = wceq 1373    e. wcel 2176   ifcif 3571   {cpr 3634   class class class wbr 4044   supcsup 7084   RRcr 7924   +oocpnf 8104   -oocmnf 8105   RR*cxr 8106    < clt 8107    <_ cle 8108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-sup 7086  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-rp 9776  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310
This theorem is referenced by:  xrmaxiflemval  11561  xrmax1sup  11564
  Copyright terms: Public domain W3C validator