ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elabf Unicode version

Theorem elabf 2917
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 1-Aug-1994.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
elabf.1  |-  F/ x ps
elabf.2  |-  A  e. 
_V
elabf.3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
elabf  |-  ( A  e.  { x  | 
ph }  <->  ps )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem elabf
StepHypRef Expression
1 elabf.2 . 2  |-  A  e. 
_V
2 nfcv 2349 . . 3  |-  F/_ x A
3 elabf.1 . . 3  |-  F/ x ps
4 elabf.3 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
52, 3, 4elabgf 2916 . 2  |-  ( A  e.  _V  ->  ( A  e.  { x  |  ph }  <->  ps )
)
61, 5ax-mp 5 1  |-  ( A  e.  { x  | 
ph }  <->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   F/wnf 1484    e. wcel 2177   {cab 2192   _Vcvv 2773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775
This theorem is referenced by:  elab  2918  indpi  7462
  Copyright terms: Public domain W3C validator