ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  indpi Unicode version

Theorem indpi 6845
Description: Principle of Finite Induction on positive integers. (Contributed by NM, 23-Mar-1996.)
Hypotheses
Ref Expression
indpi.1  |-  ( x  =  1o  ->  ( ph 
<->  ps ) )
indpi.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
indpi.3  |-  ( x  =  ( y  +N  1o )  ->  ( ph 
<->  th ) )
indpi.4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
indpi.5  |-  ps
indpi.6  |-  ( y  e.  N.  ->  ( ch  ->  th ) )
Assertion
Ref Expression
indpi  |-  ( A  e.  N.  ->  ta )
Distinct variable groups:    x, y    x, A    ps, x    ch, x    th, x    ta, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)    A( y)

Proof of Theorem indpi
StepHypRef Expression
1 indpi.4 . 2  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
2 elni 6811 . . 3  |-  ( x  e.  N.  <->  ( x  e.  om  /\  x  =/=  (/) ) )
3 eqid 2085 . . . . . . . . . 10  |-  (/)  =  (/)
43orci 683 . . . . . . . . 9  |-  ( (/)  =  (/)  \/  [. (/)  /  x ]. ph )
5 nfv 1464 . . . . . . . . . . 11  |-  F/ x (/)  =  (/)
6 nfsbc1v 2847 . . . . . . . . . . 11  |-  F/ x [. (/)  /  x ]. ph
75, 6nfor 1509 . . . . . . . . . 10  |-  F/ x
( (/)  =  (/)  \/  [. (/)  /  x ]. ph )
8 0ex 3941 . . . . . . . . . 10  |-  (/)  e.  _V
9 eqeq1 2091 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( x  =  (/)  <->  (/)  =  (/) ) )
10 sbceq1a 2838 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( ph  <->  [. (/)  /  x ]. ph )
)
119, 10orbi12d 740 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( ( x  =  (/)  \/  ph ) 
<->  ( (/)  =  (/)  \/  [. (/)  /  x ]. ph )
) )
127, 8, 11elabf 2750 . . . . . . . . 9  |-  ( (/)  e.  { x  |  ( x  =  (/)  \/  ph ) }  <->  ( (/)  =  (/)  \/ 
[. (/)  /  x ]. ph ) )
134, 12mpbir 144 . . . . . . . 8  |-  (/)  e.  {
x  |  ( x  =  (/)  \/  ph ) }
14 suceq 4203 . . . . . . . . . . . . . 14  |-  ( y  =  (/)  ->  suc  y  =  suc  (/) )
15 df-1o 6135 . . . . . . . . . . . . . 14  |-  1o  =  suc  (/)
1614, 15syl6eqr 2135 . . . . . . . . . . . . 13  |-  ( y  =  (/)  ->  suc  y  =  1o )
17 indpi.5 . . . . . . . . . . . . . . 15  |-  ps
1817olci 684 . . . . . . . . . . . . . 14  |-  ( 1o  =  (/)  \/  ps )
19 1oex 6143 . . . . . . . . . . . . . . 15  |-  1o  e.  _V
20 eqeq1 2091 . . . . . . . . . . . . . . . 16  |-  ( x  =  1o  ->  (
x  =  (/)  <->  1o  =  (/) ) )
21 indpi.1 . . . . . . . . . . . . . . . 16  |-  ( x  =  1o  ->  ( ph 
<->  ps ) )
2220, 21orbi12d 740 . . . . . . . . . . . . . . 15  |-  ( x  =  1o  ->  (
( x  =  (/)  \/ 
ph )  <->  ( 1o  =  (/)  \/  ps )
) )
2319, 22elab 2751 . . . . . . . . . . . . . 14  |-  ( 1o  e.  { x  |  ( x  =  (/)  \/ 
ph ) }  <->  ( 1o  =  (/)  \/  ps )
)
2418, 23mpbir 144 . . . . . . . . . . . . 13  |-  1o  e.  { x  |  ( x  =  (/)  \/  ph ) }
2516, 24syl6eqel 2175 . . . . . . . . . . . 12  |-  ( y  =  (/)  ->  suc  y  e.  { x  |  ( x  =  (/)  \/  ph ) } )
2625a1d 22 . . . . . . . . . . 11  |-  ( y  =  (/)  ->  ( y  e.  { x  |  ( x  =  (/)  \/ 
ph ) }  ->  suc  y  e.  { x  |  ( x  =  (/)  \/  ph ) } ) )
2726a1i 9 . . . . . . . . . 10  |-  ( y  e.  om  ->  (
y  =  (/)  ->  (
y  e.  { x  |  ( x  =  (/)  \/  ph ) }  ->  suc  y  e.  { x  |  ( x  =  (/)  \/  ph ) } ) ) )
28 indpi.6 . . . . . . . . . . . 12  |-  ( y  e.  N.  ->  ( ch  ->  th ) )
29 elni 6811 . . . . . . . . . . . . . . . 16  |-  ( y  e.  N.  <->  ( y  e.  om  /\  y  =/=  (/) ) )
3029simprbi 269 . . . . . . . . . . . . . . 15  |-  ( y  e.  N.  ->  y  =/=  (/) )
3130neneqd 2272 . . . . . . . . . . . . . 14  |-  ( y  e.  N.  ->  -.  y  =  (/) )
32 biorf 696 . . . . . . . . . . . . . 14  |-  ( -.  y  =  (/)  ->  ( ch 
<->  ( y  =  (/)  \/ 
ch ) ) )
3331, 32syl 14 . . . . . . . . . . . . 13  |-  ( y  e.  N.  ->  ( ch 
<->  ( y  =  (/)  \/ 
ch ) ) )
34 vex 2618 . . . . . . . . . . . . . 14  |-  y  e. 
_V
35 eqeq1 2091 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  (
x  =  (/)  <->  y  =  (/) ) )
36 indpi.2 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
3735, 36orbi12d 740 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  (
( x  =  (/)  \/ 
ph )  <->  ( y  =  (/)  \/  ch )
) )
3834, 37elab 2751 . . . . . . . . . . . . 13  |-  ( y  e.  { x  |  ( x  =  (/)  \/ 
ph ) }  <->  ( y  =  (/)  \/  ch )
)
3933, 38syl6bbr 196 . . . . . . . . . . . 12  |-  ( y  e.  N.  ->  ( ch 
<->  y  e.  { x  |  ( x  =  (/)  \/  ph ) } ) )
40 1pi 6818 . . . . . . . . . . . . . . . . . 18  |-  1o  e.  N.
41 addclpi 6830 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  N.  /\  1o  e.  N. )  -> 
( y  +N  1o )  e.  N. )
4240, 41mpan2 416 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  N.  ->  (
y  +N  1o )  e.  N. )
43 elni 6811 . . . . . . . . . . . . . . . . 17  |-  ( ( y  +N  1o )  e.  N.  <->  ( (
y  +N  1o )  e.  om  /\  (
y  +N  1o )  =/=  (/) ) )
4442, 43sylib 120 . . . . . . . . . . . . . . . 16  |-  ( y  e.  N.  ->  (
( y  +N  1o )  e.  om  /\  (
y  +N  1o )  =/=  (/) ) )
4544simprd 112 . . . . . . . . . . . . . . 15  |-  ( y  e.  N.  ->  (
y  +N  1o )  =/=  (/) )
4645neneqd 2272 . . . . . . . . . . . . . 14  |-  ( y  e.  N.  ->  -.  ( y  +N  1o )  =  (/) )
47 biorf 696 . . . . . . . . . . . . . 14  |-  ( -.  ( y  +N  1o )  =  (/)  ->  ( th 
<->  ( ( y  +N  1o )  =  (/)  \/ 
th ) ) )
4846, 47syl 14 . . . . . . . . . . . . 13  |-  ( y  e.  N.  ->  ( th 
<->  ( ( y  +N  1o )  =  (/)  \/ 
th ) ) )
49 eqeq1 2091 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( y  +N  1o )  ->  (
x  =  (/)  <->  ( y  +N  1o )  =  (/) ) )
50 indpi.3 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( y  +N  1o )  ->  ( ph 
<->  th ) )
5149, 50orbi12d 740 . . . . . . . . . . . . . . 15  |-  ( x  =  ( y  +N  1o )  ->  (
( x  =  (/)  \/ 
ph )  <->  ( (
y  +N  1o )  =  (/)  \/  th )
) )
5251elabg 2752 . . . . . . . . . . . . . 14  |-  ( ( y  +N  1o )  e.  N.  ->  (
( y  +N  1o )  e.  { x  |  ( x  =  (/)  \/  ph ) }  <-> 
( ( y  +N  1o )  =  (/)  \/ 
th ) ) )
5342, 52syl 14 . . . . . . . . . . . . 13  |-  ( y  e.  N.  ->  (
( y  +N  1o )  e.  { x  |  ( x  =  (/)  \/  ph ) }  <-> 
( ( y  +N  1o )  =  (/)  \/ 
th ) ) )
54 addpiord 6819 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  N.  /\  1o  e.  N. )  -> 
( y  +N  1o )  =  ( y  +o  1o ) )
5540, 54mpan2 416 . . . . . . . . . . . . . . 15  |-  ( y  e.  N.  ->  (
y  +N  1o )  =  ( y  +o  1o ) )
56 pion 6813 . . . . . . . . . . . . . . . 16  |-  ( y  e.  N.  ->  y  e.  On )
57 oa1suc 6182 . . . . . . . . . . . . . . . 16  |-  ( y  e.  On  ->  (
y  +o  1o )  =  suc  y )
5856, 57syl 14 . . . . . . . . . . . . . . 15  |-  ( y  e.  N.  ->  (
y  +o  1o )  =  suc  y )
5955, 58eqtrd 2117 . . . . . . . . . . . . . 14  |-  ( y  e.  N.  ->  (
y  +N  1o )  =  suc  y )
6059eleq1d 2153 . . . . . . . . . . . . 13  |-  ( y  e.  N.  ->  (
( y  +N  1o )  e.  { x  |  ( x  =  (/)  \/  ph ) }  <->  suc  y  e.  { x  |  ( x  =  (/)  \/  ph ) } ) )
6148, 53, 603bitr2d 214 . . . . . . . . . . . 12  |-  ( y  e.  N.  ->  ( th 
<->  suc  y  e.  {
x  |  ( x  =  (/)  \/  ph ) } ) )
6228, 39, 613imtr3d 200 . . . . . . . . . . 11  |-  ( y  e.  N.  ->  (
y  e.  { x  |  ( x  =  (/)  \/  ph ) }  ->  suc  y  e.  { x  |  ( x  =  (/)  \/  ph ) } ) )
6362a1i 9 . . . . . . . . . 10  |-  ( y  e.  om  ->  (
y  e.  N.  ->  ( y  e.  { x  |  ( x  =  (/)  \/  ph ) }  ->  suc  y  e.  { x  |  ( x  =  (/)  \/  ph ) } ) ) )
64 nndceq0 4404 . . . . . . . . . . . 12  |-  ( y  e.  om  -> DECID  y  =  (/) )
65 df-dc 779 . . . . . . . . . . . 12  |-  (DECID  y  =  (/) 
<->  ( y  =  (/)  \/ 
-.  y  =  (/) ) )
6664, 65sylib 120 . . . . . . . . . . 11  |-  ( y  e.  om  ->  (
y  =  (/)  \/  -.  y  =  (/) ) )
67 idd 21 . . . . . . . . . . . . . . 15  |-  ( y  e.  om  ->  (
y  =  (/)  ->  y  =  (/) ) )
6867necon3bd 2294 . . . . . . . . . . . . . 14  |-  ( y  e.  om  ->  ( -.  y  =  (/)  ->  y  =/=  (/) ) )
6968anc2li 322 . . . . . . . . . . . . 13  |-  ( y  e.  om  ->  ( -.  y  =  (/)  ->  (
y  e.  om  /\  y  =/=  (/) ) ) )
7069, 29syl6ibr 160 . . . . . . . . . . . 12  |-  ( y  e.  om  ->  ( -.  y  =  (/)  ->  y  e.  N. ) )
7170orim2d 735 . . . . . . . . . . 11  |-  ( y  e.  om  ->  (
( y  =  (/)  \/ 
-.  y  =  (/) )  ->  ( y  =  (/)  \/  y  e.  N. ) ) )
7266, 71mpd 13 . . . . . . . . . 10  |-  ( y  e.  om  ->  (
y  =  (/)  \/  y  e.  N. ) )
7327, 63, 72mpjaod 671 . . . . . . . . 9  |-  ( y  e.  om  ->  (
y  e.  { x  |  ( x  =  (/)  \/  ph ) }  ->  suc  y  e.  { x  |  ( x  =  (/)  \/  ph ) } ) )
7473rgen 2424 . . . . . . . 8  |-  A. y  e.  om  ( y  e. 
{ x  |  ( x  =  (/)  \/  ph ) }  ->  suc  y  e.  { x  |  ( x  =  (/)  \/  ph ) } )
75 peano5 4386 . . . . . . . 8  |-  ( (
(/)  e.  { x  |  ( x  =  (/)  \/  ph ) }  /\  A. y  e. 
om  ( y  e. 
{ x  |  ( x  =  (/)  \/  ph ) }  ->  suc  y  e.  { x  |  ( x  =  (/)  \/  ph ) } ) )  ->  om  C_  { x  |  ( x  =  (/)  \/ 
ph ) } )
7613, 74, 75mp2an 417 . . . . . . 7  |-  om  C_  { x  |  ( x  =  (/)  \/  ph ) }
7776sseli 3010 . . . . . 6  |-  ( x  e.  om  ->  x  e.  { x  |  ( x  =  (/)  \/  ph ) } )
78 abid 2073 . . . . . 6  |-  ( x  e.  { x  |  ( x  =  (/)  \/ 
ph ) }  <->  ( x  =  (/)  \/  ph )
)
7977, 78sylib 120 . . . . 5  |-  ( x  e.  om  ->  (
x  =  (/)  \/  ph ) )
8079adantr 270 . . . 4  |-  ( ( x  e.  om  /\  x  =/=  (/) )  ->  (
x  =  (/)  \/  ph ) )
81 df-ne 2252 . . . . . 6  |-  ( x  =/=  (/)  <->  -.  x  =  (/) )
82 biorf 696 . . . . . 6  |-  ( -.  x  =  (/)  ->  ( ph 
<->  ( x  =  (/)  \/ 
ph ) ) )
8381, 82sylbi 119 . . . . 5  |-  ( x  =/=  (/)  ->  ( ph  <->  ( x  =  (/)  \/  ph ) ) )
8483adantl 271 . . . 4  |-  ( ( x  e.  om  /\  x  =/=  (/) )  ->  ( ph 
<->  ( x  =  (/)  \/ 
ph ) ) )
8580, 84mpbird 165 . . 3  |-  ( ( x  e.  om  /\  x  =/=  (/) )  ->  ph )
862, 85sylbi 119 . 2  |-  ( x  e.  N.  ->  ph )
871, 86vtoclga 2678 1  |-  ( A  e.  N.  ->  ta )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 662  DECID wdc 778    = wceq 1287    e. wcel 1436   {cab 2071    =/= wne 2251   A.wral 2355   [.wsbc 2829    C_ wss 2988   (/)c0 3275   Oncon0 4164   suc csuc 4166   omcom 4378  (class class class)co 5613   1oc1o 6128    +o coa 6132   N.cnpi 6775    +N cpli 6776
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3929  ax-sep 3932  ax-nul 3940  ax-pow 3984  ax-pr 4010  ax-un 4234  ax-setind 4326  ax-iinf 4376
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-iun 3715  df-br 3821  df-opab 3875  df-mpt 3876  df-tr 3912  df-id 4094  df-iord 4167  df-on 4169  df-suc 4172  df-iom 4379  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-rn 4422  df-res 4423  df-ima 4424  df-iota 4946  df-fun 4983  df-fn 4984  df-f 4985  df-f1 4986  df-fo 4987  df-f1o 4988  df-fv 4989  df-ov 5616  df-oprab 5617  df-mpt2 5618  df-1st 5868  df-2nd 5869  df-recs 6024  df-irdg 6089  df-1o 6135  df-oadd 6139  df-ni 6807  df-pli 6808
This theorem is referenced by:  pitonn  7329
  Copyright terms: Public domain W3C validator