ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  indpi Unicode version

Theorem indpi 7274
Description: Principle of Finite Induction on positive integers. (Contributed by NM, 23-Mar-1996.)
Hypotheses
Ref Expression
indpi.1  |-  ( x  =  1o  ->  ( ph 
<->  ps ) )
indpi.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
indpi.3  |-  ( x  =  ( y  +N  1o )  ->  ( ph 
<->  th ) )
indpi.4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
indpi.5  |-  ps
indpi.6  |-  ( y  e.  N.  ->  ( ch  ->  th ) )
Assertion
Ref Expression
indpi  |-  ( A  e.  N.  ->  ta )
Distinct variable groups:    x, y    x, A    ps, x    ch, x    th, x    ta, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)    A( y)

Proof of Theorem indpi
StepHypRef Expression
1 indpi.4 . 2  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
2 elni 7240 . . 3  |-  ( x  e.  N.  <->  ( x  e.  om  /\  x  =/=  (/) ) )
3 eqid 2164 . . . . . . . . . 10  |-  (/)  =  (/)
43orci 721 . . . . . . . . 9  |-  ( (/)  =  (/)  \/  [. (/)  /  x ]. ph )
5 nfv 1515 . . . . . . . . . . 11  |-  F/ x (/)  =  (/)
6 nfsbc1v 2964 . . . . . . . . . . 11  |-  F/ x [. (/)  /  x ]. ph
75, 6nfor 1561 . . . . . . . . . 10  |-  F/ x
( (/)  =  (/)  \/  [. (/)  /  x ]. ph )
8 0ex 4103 . . . . . . . . . 10  |-  (/)  e.  _V
9 eqeq1 2171 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( x  =  (/)  <->  (/)  =  (/) ) )
10 sbceq1a 2955 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( ph  <->  [. (/)  /  x ]. ph )
)
119, 10orbi12d 783 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( ( x  =  (/)  \/  ph ) 
<->  ( (/)  =  (/)  \/  [. (/)  /  x ]. ph )
) )
127, 8, 11elabf 2864 . . . . . . . . 9  |-  ( (/)  e.  { x  |  ( x  =  (/)  \/  ph ) }  <->  ( (/)  =  (/)  \/ 
[. (/)  /  x ]. ph ) )
134, 12mpbir 145 . . . . . . . 8  |-  (/)  e.  {
x  |  ( x  =  (/)  \/  ph ) }
14 suceq 4374 . . . . . . . . . . . . . 14  |-  ( y  =  (/)  ->  suc  y  =  suc  (/) )
15 df-1o 6375 . . . . . . . . . . . . . 14  |-  1o  =  suc  (/)
1614, 15eqtr4di 2215 . . . . . . . . . . . . 13  |-  ( y  =  (/)  ->  suc  y  =  1o )
17 indpi.5 . . . . . . . . . . . . . . 15  |-  ps
1817olci 722 . . . . . . . . . . . . . 14  |-  ( 1o  =  (/)  \/  ps )
19 1oex 6383 . . . . . . . . . . . . . . 15  |-  1o  e.  _V
20 eqeq1 2171 . . . . . . . . . . . . . . . 16  |-  ( x  =  1o  ->  (
x  =  (/)  <->  1o  =  (/) ) )
21 indpi.1 . . . . . . . . . . . . . . . 16  |-  ( x  =  1o  ->  ( ph 
<->  ps ) )
2220, 21orbi12d 783 . . . . . . . . . . . . . . 15  |-  ( x  =  1o  ->  (
( x  =  (/)  \/ 
ph )  <->  ( 1o  =  (/)  \/  ps )
) )
2319, 22elab 2865 . . . . . . . . . . . . . 14  |-  ( 1o  e.  { x  |  ( x  =  (/)  \/ 
ph ) }  <->  ( 1o  =  (/)  \/  ps )
)
2418, 23mpbir 145 . . . . . . . . . . . . 13  |-  1o  e.  { x  |  ( x  =  (/)  \/  ph ) }
2516, 24eqeltrdi 2255 . . . . . . . . . . . 12  |-  ( y  =  (/)  ->  suc  y  e.  { x  |  ( x  =  (/)  \/  ph ) } )
2625a1d 22 . . . . . . . . . . 11  |-  ( y  =  (/)  ->  ( y  e.  { x  |  ( x  =  (/)  \/ 
ph ) }  ->  suc  y  e.  { x  |  ( x  =  (/)  \/  ph ) } ) )
2726a1i 9 . . . . . . . . . 10  |-  ( y  e.  om  ->  (
y  =  (/)  ->  (
y  e.  { x  |  ( x  =  (/)  \/  ph ) }  ->  suc  y  e.  { x  |  ( x  =  (/)  \/  ph ) } ) ) )
28 indpi.6 . . . . . . . . . . . 12  |-  ( y  e.  N.  ->  ( ch  ->  th ) )
29 elni 7240 . . . . . . . . . . . . . . . 16  |-  ( y  e.  N.  <->  ( y  e.  om  /\  y  =/=  (/) ) )
3029simprbi 273 . . . . . . . . . . . . . . 15  |-  ( y  e.  N.  ->  y  =/=  (/) )
3130neneqd 2355 . . . . . . . . . . . . . 14  |-  ( y  e.  N.  ->  -.  y  =  (/) )
32 biorf 734 . . . . . . . . . . . . . 14  |-  ( -.  y  =  (/)  ->  ( ch 
<->  ( y  =  (/)  \/ 
ch ) ) )
3331, 32syl 14 . . . . . . . . . . . . 13  |-  ( y  e.  N.  ->  ( ch 
<->  ( y  =  (/)  \/ 
ch ) ) )
34 vex 2724 . . . . . . . . . . . . . 14  |-  y  e. 
_V
35 eqeq1 2171 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  (
x  =  (/)  <->  y  =  (/) ) )
36 indpi.2 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
3735, 36orbi12d 783 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  (
( x  =  (/)  \/ 
ph )  <->  ( y  =  (/)  \/  ch )
) )
3834, 37elab 2865 . . . . . . . . . . . . 13  |-  ( y  e.  { x  |  ( x  =  (/)  \/ 
ph ) }  <->  ( y  =  (/)  \/  ch )
)
3933, 38bitr4di 197 . . . . . . . . . . . 12  |-  ( y  e.  N.  ->  ( ch 
<->  y  e.  { x  |  ( x  =  (/)  \/  ph ) } ) )
40 1pi 7247 . . . . . . . . . . . . . . . . . 18  |-  1o  e.  N.
41 addclpi 7259 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  N.  /\  1o  e.  N. )  -> 
( y  +N  1o )  e.  N. )
4240, 41mpan2 422 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  N.  ->  (
y  +N  1o )  e.  N. )
43 elni 7240 . . . . . . . . . . . . . . . . 17  |-  ( ( y  +N  1o )  e.  N.  <->  ( (
y  +N  1o )  e.  om  /\  (
y  +N  1o )  =/=  (/) ) )
4442, 43sylib 121 . . . . . . . . . . . . . . . 16  |-  ( y  e.  N.  ->  (
( y  +N  1o )  e.  om  /\  (
y  +N  1o )  =/=  (/) ) )
4544simprd 113 . . . . . . . . . . . . . . 15  |-  ( y  e.  N.  ->  (
y  +N  1o )  =/=  (/) )
4645neneqd 2355 . . . . . . . . . . . . . 14  |-  ( y  e.  N.  ->  -.  ( y  +N  1o )  =  (/) )
47 biorf 734 . . . . . . . . . . . . . 14  |-  ( -.  ( y  +N  1o )  =  (/)  ->  ( th 
<->  ( ( y  +N  1o )  =  (/)  \/ 
th ) ) )
4846, 47syl 14 . . . . . . . . . . . . 13  |-  ( y  e.  N.  ->  ( th 
<->  ( ( y  +N  1o )  =  (/)  \/ 
th ) ) )
49 eqeq1 2171 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( y  +N  1o )  ->  (
x  =  (/)  <->  ( y  +N  1o )  =  (/) ) )
50 indpi.3 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( y  +N  1o )  ->  ( ph 
<->  th ) )
5149, 50orbi12d 783 . . . . . . . . . . . . . . 15  |-  ( x  =  ( y  +N  1o )  ->  (
( x  =  (/)  \/ 
ph )  <->  ( (
y  +N  1o )  =  (/)  \/  th )
) )
5251elabg 2867 . . . . . . . . . . . . . 14  |-  ( ( y  +N  1o )  e.  N.  ->  (
( y  +N  1o )  e.  { x  |  ( x  =  (/)  \/  ph ) }  <-> 
( ( y  +N  1o )  =  (/)  \/ 
th ) ) )
5342, 52syl 14 . . . . . . . . . . . . 13  |-  ( y  e.  N.  ->  (
( y  +N  1o )  e.  { x  |  ( x  =  (/)  \/  ph ) }  <-> 
( ( y  +N  1o )  =  (/)  \/ 
th ) ) )
54 addpiord 7248 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  N.  /\  1o  e.  N. )  -> 
( y  +N  1o )  =  ( y  +o  1o ) )
5540, 54mpan2 422 . . . . . . . . . . . . . . 15  |-  ( y  e.  N.  ->  (
y  +N  1o )  =  ( y  +o  1o ) )
56 pion 7242 . . . . . . . . . . . . . . . 16  |-  ( y  e.  N.  ->  y  e.  On )
57 oa1suc 6426 . . . . . . . . . . . . . . . 16  |-  ( y  e.  On  ->  (
y  +o  1o )  =  suc  y )
5856, 57syl 14 . . . . . . . . . . . . . . 15  |-  ( y  e.  N.  ->  (
y  +o  1o )  =  suc  y )
5955, 58eqtrd 2197 . . . . . . . . . . . . . 14  |-  ( y  e.  N.  ->  (
y  +N  1o )  =  suc  y )
6059eleq1d 2233 . . . . . . . . . . . . 13  |-  ( y  e.  N.  ->  (
( y  +N  1o )  e.  { x  |  ( x  =  (/)  \/  ph ) }  <->  suc  y  e.  { x  |  ( x  =  (/)  \/  ph ) } ) )
6148, 53, 603bitr2d 215 . . . . . . . . . . . 12  |-  ( y  e.  N.  ->  ( th 
<->  suc  y  e.  {
x  |  ( x  =  (/)  \/  ph ) } ) )
6228, 39, 613imtr3d 201 . . . . . . . . . . 11  |-  ( y  e.  N.  ->  (
y  e.  { x  |  ( x  =  (/)  \/  ph ) }  ->  suc  y  e.  { x  |  ( x  =  (/)  \/  ph ) } ) )
6362a1i 9 . . . . . . . . . 10  |-  ( y  e.  om  ->  (
y  e.  N.  ->  ( y  e.  { x  |  ( x  =  (/)  \/  ph ) }  ->  suc  y  e.  { x  |  ( x  =  (/)  \/  ph ) } ) ) )
64 nndceq0 4589 . . . . . . . . . . . 12  |-  ( y  e.  om  -> DECID  y  =  (/) )
65 df-dc 825 . . . . . . . . . . . 12  |-  (DECID  y  =  (/) 
<->  ( y  =  (/)  \/ 
-.  y  =  (/) ) )
6664, 65sylib 121 . . . . . . . . . . 11  |-  ( y  e.  om  ->  (
y  =  (/)  \/  -.  y  =  (/) ) )
67 idd 21 . . . . . . . . . . . . . . 15  |-  ( y  e.  om  ->  (
y  =  (/)  ->  y  =  (/) ) )
6867necon3bd 2377 . . . . . . . . . . . . . 14  |-  ( y  e.  om  ->  ( -.  y  =  (/)  ->  y  =/=  (/) ) )
6968anc2li 327 . . . . . . . . . . . . 13  |-  ( y  e.  om  ->  ( -.  y  =  (/)  ->  (
y  e.  om  /\  y  =/=  (/) ) ) )
7069, 29syl6ibr 161 . . . . . . . . . . . 12  |-  ( y  e.  om  ->  ( -.  y  =  (/)  ->  y  e.  N. ) )
7170orim2d 778 . . . . . . . . . . 11  |-  ( y  e.  om  ->  (
( y  =  (/)  \/ 
-.  y  =  (/) )  ->  ( y  =  (/)  \/  y  e.  N. ) ) )
7266, 71mpd 13 . . . . . . . . . 10  |-  ( y  e.  om  ->  (
y  =  (/)  \/  y  e.  N. ) )
7327, 63, 72mpjaod 708 . . . . . . . . 9  |-  ( y  e.  om  ->  (
y  e.  { x  |  ( x  =  (/)  \/  ph ) }  ->  suc  y  e.  { x  |  ( x  =  (/)  \/  ph ) } ) )
7473rgen 2517 . . . . . . . 8  |-  A. y  e.  om  ( y  e. 
{ x  |  ( x  =  (/)  \/  ph ) }  ->  suc  y  e.  { x  |  ( x  =  (/)  \/  ph ) } )
75 peano5 4569 . . . . . . . 8  |-  ( (
(/)  e.  { x  |  ( x  =  (/)  \/  ph ) }  /\  A. y  e. 
om  ( y  e. 
{ x  |  ( x  =  (/)  \/  ph ) }  ->  suc  y  e.  { x  |  ( x  =  (/)  \/  ph ) } ) )  ->  om  C_  { x  |  ( x  =  (/)  \/ 
ph ) } )
7613, 74, 75mp2an 423 . . . . . . 7  |-  om  C_  { x  |  ( x  =  (/)  \/  ph ) }
7776sseli 3133 . . . . . 6  |-  ( x  e.  om  ->  x  e.  { x  |  ( x  =  (/)  \/  ph ) } )
78 abid 2152 . . . . . 6  |-  ( x  e.  { x  |  ( x  =  (/)  \/ 
ph ) }  <->  ( x  =  (/)  \/  ph )
)
7977, 78sylib 121 . . . . 5  |-  ( x  e.  om  ->  (
x  =  (/)  \/  ph ) )
8079adantr 274 . . . 4  |-  ( ( x  e.  om  /\  x  =/=  (/) )  ->  (
x  =  (/)  \/  ph ) )
81 df-ne 2335 . . . . . 6  |-  ( x  =/=  (/)  <->  -.  x  =  (/) )
82 biorf 734 . . . . . 6  |-  ( -.  x  =  (/)  ->  ( ph 
<->  ( x  =  (/)  \/ 
ph ) ) )
8381, 82sylbi 120 . . . . 5  |-  ( x  =/=  (/)  ->  ( ph  <->  ( x  =  (/)  \/  ph ) ) )
8483adantl 275 . . . 4  |-  ( ( x  e.  om  /\  x  =/=  (/) )  ->  ( ph 
<->  ( x  =  (/)  \/ 
ph ) ) )
8580, 84mpbird 166 . . 3  |-  ( ( x  e.  om  /\  x  =/=  (/) )  ->  ph )
862, 85sylbi 120 . 2  |-  ( x  e.  N.  ->  ph )
871, 86vtoclga 2787 1  |-  ( A  e.  N.  ->  ta )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824    = wceq 1342    e. wcel 2135   {cab 2150    =/= wne 2334   A.wral 2442   [.wsbc 2946    C_ wss 3111   (/)c0 3404   Oncon0 4335   suc csuc 4337   omcom 4561  (class class class)co 5836   1oc1o 6368    +o coa 6372   N.cnpi 7204    +N cpli 7205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-iord 4338  df-on 4340  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-irdg 6329  df-1o 6375  df-oadd 6379  df-ni 7236  df-pli 7237
This theorem is referenced by:  pitonn  7780
  Copyright terms: Public domain W3C validator