Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elabf | GIF version |
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 1-Aug-1994.) (Revised by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
elabf.1 | ⊢ Ⅎ𝑥𝜓 |
elabf.2 | ⊢ 𝐴 ∈ V |
elabf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elabf | ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elabf.2 | . 2 ⊢ 𝐴 ∈ V | |
2 | nfcv 2308 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | elabf.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
4 | elabf.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 2, 3, 4 | elabgf 2868 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
6 | 1, 5 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 Ⅎwnf 1448 ∈ wcel 2136 {cab 2151 Vcvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 |
This theorem is referenced by: elab 2870 indpi 7283 |
Copyright terms: Public domain | W3C validator |