Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  elabf GIF version

Theorem elabf 2827
 Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 1-Aug-1994.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
elabf.1 𝑥𝜓
elabf.2 𝐴 ∈ V
elabf.3 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elabf (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem elabf
StepHypRef Expression
1 elabf.2 . 2 𝐴 ∈ V
2 nfcv 2281 . . 3 𝑥𝐴
3 elabf.1 . . 3 𝑥𝜓
4 elabf.3 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
52, 3, 4elabgf 2826 . 2 (𝐴 ∈ V → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
61, 5ax-mp 5 1 (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 104   = wceq 1331  Ⅎwnf 1436   ∈ wcel 1480  {cab 2125  Vcvv 2686 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688 This theorem is referenced by:  elab  2828  indpi  7169
 Copyright terms: Public domain W3C validator