| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elabf | GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 1-Aug-1994.) (Revised by Mario Carneiro, 12-Oct-2016.) |
| Ref | Expression |
|---|---|
| elabf.1 | ⊢ Ⅎ𝑥𝜓 |
| elabf.2 | ⊢ 𝐴 ∈ V |
| elabf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elabf | ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elabf.2 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | nfcv 2372 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | elabf.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 4 | elabf.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | 2, 3, 4 | elabgf 2945 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| 6 | 1, 5 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 Ⅎwnf 1506 ∈ wcel 2200 {cab 2215 Vcvv 2799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 |
| This theorem is referenced by: elab 2947 indpi 7537 |
| Copyright terms: Public domain | W3C validator |