ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elabf GIF version

Theorem elabf 2869
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 1-Aug-1994.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
elabf.1 𝑥𝜓
elabf.2 𝐴 ∈ V
elabf.3 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elabf (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem elabf
StepHypRef Expression
1 elabf.2 . 2 𝐴 ∈ V
2 nfcv 2308 . . 3 𝑥𝐴
3 elabf.1 . . 3 𝑥𝜓
4 elabf.3 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
52, 3, 4elabgf 2868 . 2 (𝐴 ∈ V → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
61, 5ax-mp 5 1 (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1343  wnf 1448  wcel 2136  {cab 2151  Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728
This theorem is referenced by:  elab  2870  indpi  7283
  Copyright terms: Public domain W3C validator