Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  elabgf1 Unicode version

Theorem elabgf1 11679
Description: One implication of elabgf 2758. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
elabgf1.nf1  |-  F/_ x A
elabgf1.nf2  |-  F/ x ps
elabgf1.1  |-  ( x  =  A  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
elabgf1  |-  ( A  e.  { x  | 
ph }  ->  ps )

Proof of Theorem elabgf1
StepHypRef Expression
1 elabgf1.nf1 . . 3  |-  F/_ x A
2 elabgf1.nf2 . . 3  |-  F/ x ps
31, 2elabgft1 11678 . 2  |-  ( A. x ( x  =  A  ->  ( ph  ->  ps ) )  -> 
( A  e.  {
x  |  ph }  ->  ps ) )
4 elabgf1.1 . 2  |-  ( x  =  A  ->  ( ph  ->  ps ) )
53, 4mpg 1385 1  |-  ( A  e.  { x  | 
ph }  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1289   F/wnf 1394    e. wcel 1438   {cab 2074   F/_wnfc 2215
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621
This theorem is referenced by:  elabf1  11681
  Copyright terms: Public domain W3C validator