Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  elabgf1 Unicode version

Theorem elabgf1 15915
Description: One implication of elabgf 2922. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
elabgf1.nf1  |-  F/_ x A
elabgf1.nf2  |-  F/ x ps
elabgf1.1  |-  ( x  =  A  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
elabgf1  |-  ( A  e.  { x  | 
ph }  ->  ps )

Proof of Theorem elabgf1
StepHypRef Expression
1 elabgf1.nf1 . . 3  |-  F/_ x A
2 elabgf1.nf2 . . 3  |-  F/ x ps
31, 2elabgft1 15914 . 2  |-  ( A. x ( x  =  A  ->  ( ph  ->  ps ) )  -> 
( A  e.  {
x  |  ph }  ->  ps ) )
4 elabgf1.1 . 2  |-  ( x  =  A  ->  ( ph  ->  ps ) )
53, 4mpg 1475 1  |-  ( A  e.  { x  | 
ph }  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   F/wnf 1484    e. wcel 2178   {cab 2193   F/_wnfc 2337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778
This theorem is referenced by:  elabf1  15917
  Copyright terms: Public domain W3C validator