Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  elabf1 Unicode version

Theorem elabf1 14917
Description: One implication of elabf 2895. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
elabf1.nf  |-  F/ x ps
elabf1.1  |-  ( x  =  A  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
elabf1  |-  ( A  e.  { x  | 
ph }  ->  ps )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem elabf1
StepHypRef Expression
1 nfcv 2332 . 2  |-  F/_ x A
2 elabf1.nf . 2  |-  F/ x ps
3 elabf1.1 . 2  |-  ( x  =  A  ->  ( ph  ->  ps ) )
41, 2, 3elabgf1 14915 1  |-  ( A  e.  { x  | 
ph }  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   F/wnf 1471    e. wcel 2160   {cab 2175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754
This theorem is referenced by:  elab1  14919  bj-bdfindis  15083
  Copyright terms: Public domain W3C validator