Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  elabf1 Unicode version

Theorem elabf1 16103
Description: One implication of elabf 2946. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
elabf1.nf  |-  F/ x ps
elabf1.1  |-  ( x  =  A  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
elabf1  |-  ( A  e.  { x  | 
ph }  ->  ps )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem elabf1
StepHypRef Expression
1 nfcv 2372 . 2  |-  F/_ x A
2 elabf1.nf . 2  |-  F/ x ps
3 elabf1.1 . 2  |-  ( x  =  A  ->  ( ph  ->  ps ) )
41, 2, 3elabgf1 16101 1  |-  ( A  e.  { x  | 
ph }  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   F/wnf 1506    e. wcel 2200   {cab 2215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801
This theorem is referenced by:  elab1  16105  bj-bdfindis  16268
  Copyright terms: Public domain W3C validator