Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  elabgf1 GIF version

Theorem elabgf1 15648
Description: One implication of elabgf 2914. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
elabgf1.nf1 𝑥𝐴
elabgf1.nf2 𝑥𝜓
elabgf1.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elabgf1 (𝐴 ∈ {𝑥𝜑} → 𝜓)

Proof of Theorem elabgf1
StepHypRef Expression
1 elabgf1.nf1 . . 3 𝑥𝐴
2 elabgf1.nf2 . . 3 𝑥𝜓
31, 2elabgft1 15647 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴 ∈ {𝑥𝜑} → 𝜓))
4 elabgf1.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
53, 4mpg 1473 1 (𝐴 ∈ {𝑥𝜑} → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wnf 1482  wcel 2175  {cab 2190  wnfc 2334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773
This theorem is referenced by:  elabf1  15650
  Copyright terms: Public domain W3C validator