ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elex22 Unicode version

Theorem elex22 2778
Description: If two classes each contain another class, then both contain some set. (Contributed by Alan Sare, 24-Oct-2011.)
Assertion
Ref Expression
elex22  |-  ( ( A  e.  B  /\  A  e.  C )  ->  E. x ( x  e.  B  /\  x  e.  C ) )
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem elex22
StepHypRef Expression
1 eleq1a 2268 . . . 4  |-  ( A  e.  B  ->  (
x  =  A  ->  x  e.  B )
)
2 eleq1a 2268 . . . 4  |-  ( A  e.  C  ->  (
x  =  A  ->  x  e.  C )
)
31, 2anim12ii 343 . . 3  |-  ( ( A  e.  B  /\  A  e.  C )  ->  ( x  =  A  ->  ( x  e.  B  /\  x  e.  C ) ) )
43alrimiv 1888 . 2  |-  ( ( A  e.  B  /\  A  e.  C )  ->  A. x ( x  =  A  ->  (
x  e.  B  /\  x  e.  C )
) )
5 elisset 2777 . . 3  |-  ( A  e.  B  ->  E. x  x  =  A )
65adantr 276 . 2  |-  ( ( A  e.  B  /\  A  e.  C )  ->  E. x  x  =  A )
7 exim 1613 . 2  |-  ( A. x ( x  =  A  ->  ( x  e.  B  /\  x  e.  C ) )  -> 
( E. x  x  =  A  ->  E. x
( x  e.  B  /\  x  e.  C
) ) )
84, 6, 7sylc 62 1  |-  ( ( A  e.  B  /\  A  e.  C )  ->  E. x ( x  e.  B  /\  x  e.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1362    = wceq 1364   E.wex 1506    e. wcel 2167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-v 2765
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator