![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elex2 | Unicode version |
Description: If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011.) |
Ref | Expression |
---|---|
elex2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1a 2265 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | alrimiv 1885 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | elisset 2774 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | exim 1610 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 2, 3, 4 | sylc 62 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-v 2762 |
This theorem is referenced by: snmg 3737 oprcl 3829 brm 4080 ss1o0el1 4227 exss 4257 onintrab2im 4551 regexmidlemm 4565 dmxpid 4884 acexmidlem2 5916 frecabcl 6454 ixpm 6786 enm 6876 ssfilem 6933 fin0 6943 fin0or 6944 diffitest 6945 diffisn 6951 infm 6962 inffiexmid 6964 ctssdc 7174 omct 7178 ctssexmid 7211 exmidfodomrlemr 7264 exmidfodomrlemrALT 7265 exmidaclem 7270 caucvgsrlemasr 7852 suplocsrlempr 7869 gtso 8100 sup3exmid 8978 indstr 9661 negm 9683 fzm 10107 fzom 10234 rexfiuz 11136 r19.2uz 11140 resqrexlemgt0 11167 climuni 11439 bezoutlembi 12145 nninfct 12181 lcmgcdlem 12218 pcprecl 12430 pc2dvds 12471 4sqlem13m 12544 nninfdclemcl 12608 dfgrp3m 13174 issubg2m 13262 issubgrpd2 13263 issubg3 13265 issubg4m 13266 grpissubg 13267 subgintm 13271 nmzsubg 13283 ghmrn 13330 ghmpreima 13339 dvdsr02 13604 01eq0ring 13688 subrgugrp 13739 lmodfopnelem1 13823 rmodislmodlem 13849 rmodislmod 13850 lss1 13861 lsssubg 13876 islss3 13878 islss4 13881 lss1d 13882 lssintclm 13883 dflidl2rng 13980 lidlsubg 13985 cnsubglem 14078 tgioo 14733 elply2 14914 pw1nct 15563 nninfall 15569 nnnninfen 15581 |
Copyright terms: Public domain | W3C validator |