| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elex2 | Unicode version | ||
| Description: If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011.) |
| Ref | Expression |
|---|---|
| elex2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1a 2277 |
. . 3
| |
| 2 | 1 | alrimiv 1897 |
. 2
|
| 3 | elisset 2786 |
. 2
| |
| 4 | exim 1622 |
. 2
| |
| 5 | 2, 3, 4 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-v 2774 |
| This theorem is referenced by: snmg 3751 oprcl 3843 brm 4095 ss1o0el1 4242 exss 4272 onintrab2im 4567 regexmidlemm 4581 dmxpid 4900 acexmidlem2 5943 frecabcl 6487 ixpm 6819 enm 6917 ssfilem 6974 fin0 6984 fin0or 6985 diffitest 6986 diffisn 6992 infm 7003 inffiexmid 7005 ctssdc 7217 omct 7221 ctssexmid 7254 exmidfodomrlemr 7312 exmidfodomrlemrALT 7313 acnrcl 7315 exmidaclem 7322 caucvgsrlemasr 7905 suplocsrlempr 7922 gtso 8153 sup3exmid 9032 indstr 9716 negm 9738 fzm 10162 fzom 10289 rexfiuz 11333 r19.2uz 11337 resqrexlemgt0 11364 climuni 11637 bezoutlembi 12359 nninfct 12395 lcmgcdlem 12432 pcprecl 12645 pc2dvds 12686 4sqlem13m 12759 nninfdclemcl 12852 dfgrp3m 13464 issubg2m 13558 issubgrpd2 13559 issubg3 13561 issubg4m 13562 grpissubg 13563 subgintm 13567 nmzsubg 13579 ghmrn 13626 ghmpreima 13635 dvdsr02 13900 01eq0ring 13984 subrgugrp 14035 lmodfopnelem1 14119 rmodislmodlem 14145 rmodislmod 14146 lss1 14157 lsssubg 14172 islss3 14174 islss4 14177 lss1d 14178 lssintclm 14179 dflidl2rng 14276 lidlsubg 14281 cnsubglem 14374 tgioo 15059 elply2 15240 pw1nct 15977 nninfall 15983 nnnninfen 15995 |
| Copyright terms: Public domain | W3C validator |