| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elex2 | Unicode version | ||
| Description: If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011.) |
| Ref | Expression |
|---|---|
| elex2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1a 2277 |
. . 3
| |
| 2 | 1 | alrimiv 1897 |
. 2
|
| 3 | elisset 2786 |
. 2
| |
| 4 | exim 1622 |
. 2
| |
| 5 | 2, 3, 4 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-v 2774 |
| This theorem is referenced by: snmg 3751 oprcl 3843 brm 4094 ss1o0el1 4241 exss 4271 onintrab2im 4566 regexmidlemm 4580 dmxpid 4899 acexmidlem2 5941 frecabcl 6485 ixpm 6817 enm 6915 ssfilem 6972 fin0 6982 fin0or 6983 diffitest 6984 diffisn 6990 infm 7001 inffiexmid 7003 ctssdc 7215 omct 7219 ctssexmid 7252 exmidfodomrlemr 7310 exmidfodomrlemrALT 7311 acnrcl 7313 exmidaclem 7320 caucvgsrlemasr 7903 suplocsrlempr 7920 gtso 8151 sup3exmid 9030 indstr 9714 negm 9736 fzm 10160 fzom 10287 rexfiuz 11300 r19.2uz 11304 resqrexlemgt0 11331 climuni 11604 bezoutlembi 12326 nninfct 12362 lcmgcdlem 12399 pcprecl 12612 pc2dvds 12653 4sqlem13m 12726 nninfdclemcl 12819 dfgrp3m 13431 issubg2m 13525 issubgrpd2 13526 issubg3 13528 issubg4m 13529 grpissubg 13530 subgintm 13534 nmzsubg 13546 ghmrn 13593 ghmpreima 13602 dvdsr02 13867 01eq0ring 13951 subrgugrp 14002 lmodfopnelem1 14086 rmodislmodlem 14112 rmodislmod 14113 lss1 14124 lsssubg 14139 islss3 14141 islss4 14144 lss1d 14145 lssintclm 14146 dflidl2rng 14243 lidlsubg 14248 cnsubglem 14341 tgioo 15026 elply2 15207 pw1nct 15940 nninfall 15946 nnnninfen 15958 |
| Copyright terms: Public domain | W3C validator |