![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elex2 | Unicode version |
Description: If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011.) |
Ref | Expression |
---|---|
elex2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1a 2249 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | alrimiv 1874 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | elisset 2752 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | exim 1599 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 2, 3, 4 | sylc 62 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-v 2740 |
This theorem is referenced by: snmg 3711 oprcl 3803 brm 4054 ss1o0el1 4198 exss 4228 onintrab2im 4518 regexmidlemm 4532 dmxpid 4849 acexmidlem2 5872 frecabcl 6400 ixpm 6730 enm 6820 ssfilem 6875 fin0 6885 fin0or 6886 diffitest 6887 diffisn 6893 infm 6904 inffiexmid 6906 ctssdc 7112 omct 7116 ctssexmid 7148 exmidfodomrlemr 7201 exmidfodomrlemrALT 7202 exmidaclem 7207 caucvgsrlemasr 7789 suplocsrlempr 7806 gtso 8036 sup3exmid 8914 indstr 9593 negm 9615 fzm 10038 fzom 10164 rexfiuz 10998 r19.2uz 11002 resqrexlemgt0 11029 climuni 11301 bezoutlembi 12006 lcmgcdlem 12077 pcprecl 12289 pc2dvds 12329 nninfdclemcl 12449 dfgrp3m 12969 issubg2m 13049 issubgrpd2 13050 issubg3 13052 issubg4m 13053 grpissubg 13054 subgintm 13058 nmzsubg 13070 dvdsr02 13274 01eq0ring 13330 subrgugrp 13361 lmodfopnelem1 13414 rmodislmodlem 13440 rmodislmod 13441 cnsubglem 13476 tgioo 14049 pw1nct 14755 nninfall 14761 |
Copyright terms: Public domain | W3C validator |