| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elex2 | Unicode version | ||
| Description: If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011.) |
| Ref | Expression |
|---|---|
| elex2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1a 2268 |
. . 3
| |
| 2 | 1 | alrimiv 1888 |
. 2
|
| 3 | elisset 2777 |
. 2
| |
| 4 | exim 1613 |
. 2
| |
| 5 | 2, 3, 4 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: snmg 3741 oprcl 3833 brm 4084 ss1o0el1 4231 exss 4261 onintrab2im 4555 regexmidlemm 4569 dmxpid 4888 acexmidlem2 5922 frecabcl 6466 ixpm 6798 enm 6888 ssfilem 6945 fin0 6955 fin0or 6956 diffitest 6957 diffisn 6963 infm 6974 inffiexmid 6976 ctssdc 7188 omct 7192 ctssexmid 7225 exmidfodomrlemr 7281 exmidfodomrlemrALT 7282 acnrcl 7284 exmidaclem 7291 caucvgsrlemasr 7874 suplocsrlempr 7891 gtso 8122 sup3exmid 9001 indstr 9684 negm 9706 fzm 10130 fzom 10257 rexfiuz 11171 r19.2uz 11175 resqrexlemgt0 11202 climuni 11475 bezoutlembi 12197 nninfct 12233 lcmgcdlem 12270 pcprecl 12483 pc2dvds 12524 4sqlem13m 12597 nninfdclemcl 12690 dfgrp3m 13301 issubg2m 13395 issubgrpd2 13396 issubg3 13398 issubg4m 13399 grpissubg 13400 subgintm 13404 nmzsubg 13416 ghmrn 13463 ghmpreima 13472 dvdsr02 13737 01eq0ring 13821 subrgugrp 13872 lmodfopnelem1 13956 rmodislmodlem 13982 rmodislmod 13983 lss1 13994 lsssubg 14009 islss3 14011 islss4 14014 lss1d 14015 lssintclm 14016 dflidl2rng 14113 lidlsubg 14118 cnsubglem 14211 tgioo 14874 elply2 15055 pw1nct 15734 nninfall 15740 nnnninfen 15752 |
| Copyright terms: Public domain | W3C validator |