Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elex2 | Unicode version |
Description: If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011.) |
Ref | Expression |
---|---|
elex2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1a 2237 | . . 3 | |
2 | 1 | alrimiv 1862 | . 2 |
3 | elisset 2739 | . 2 | |
4 | exim 1587 | . 2 | |
5 | 2, 3, 4 | sylc 62 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1341 wceq 1343 wex 1480 wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2727 |
This theorem is referenced by: snmg 3693 oprcl 3781 brm 4031 ss1o0el1 4175 exss 4204 onintrab2im 4494 regexmidlemm 4508 dmxpid 4824 acexmidlem2 5838 frecabcl 6363 ixpm 6692 enm 6782 ssfilem 6837 fin0 6847 fin0or 6848 diffitest 6849 diffisn 6855 infm 6866 inffiexmid 6868 ctssdc 7074 omct 7078 ctssexmid 7110 exmidfodomrlemr 7154 exmidfodomrlemrALT 7155 exmidaclem 7160 caucvgsrlemasr 7727 suplocsrlempr 7744 gtso 7973 sup3exmid 8848 indstr 9527 negm 9549 fzm 9969 fzom 10095 rexfiuz 10927 r19.2uz 10931 resqrexlemgt0 10958 climuni 11230 bezoutlembi 11934 lcmgcdlem 12005 pcprecl 12217 pc2dvds 12257 nninfdclemcl 12377 tgioo 13146 pw1nct 13843 nninfall 13849 |
Copyright terms: Public domain | W3C validator |