![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elex2 | Unicode version |
Description: If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011.) |
Ref | Expression |
---|---|
elex2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1a 2265 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | alrimiv 1885 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | elisset 2774 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | exim 1610 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 2, 3, 4 | sylc 62 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-v 2762 |
This theorem is referenced by: snmg 3736 oprcl 3828 brm 4079 ss1o0el1 4226 exss 4256 onintrab2im 4550 regexmidlemm 4564 dmxpid 4883 acexmidlem2 5915 frecabcl 6452 ixpm 6784 enm 6874 ssfilem 6931 fin0 6941 fin0or 6942 diffitest 6943 diffisn 6949 infm 6960 inffiexmid 6962 ctssdc 7172 omct 7176 ctssexmid 7209 exmidfodomrlemr 7262 exmidfodomrlemrALT 7263 exmidaclem 7268 caucvgsrlemasr 7850 suplocsrlempr 7867 gtso 8098 sup3exmid 8976 indstr 9658 negm 9680 fzm 10104 fzom 10231 rexfiuz 11133 r19.2uz 11137 resqrexlemgt0 11164 climuni 11436 bezoutlembi 12142 nninfct 12178 lcmgcdlem 12215 pcprecl 12427 pc2dvds 12468 4sqlem13m 12541 nninfdclemcl 12605 dfgrp3m 13171 issubg2m 13259 issubgrpd2 13260 issubg3 13262 issubg4m 13263 grpissubg 13264 subgintm 13268 nmzsubg 13280 ghmrn 13327 ghmpreima 13336 dvdsr02 13601 01eq0ring 13685 subrgugrp 13736 lmodfopnelem1 13820 rmodislmodlem 13846 rmodislmod 13847 lss1 13858 lsssubg 13873 islss3 13875 islss4 13878 lss1d 13879 lssintclm 13880 dflidl2rng 13977 lidlsubg 13982 cnsubglem 14067 tgioo 14714 elply2 14881 pw1nct 15493 nninfall 15499 nnnninfen 15511 |
Copyright terms: Public domain | W3C validator |