![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eleq1a | Unicode version |
Description: A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
eleq1a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2256 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimprcd 160 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: elex22 2775 elex2 2776 reu6 2950 disjne 3501 ssimaex 5619 fnex 5781 f1ocnv2d 6124 mpoexw 6268 tfrlem8 6373 eroprf 6684 ac6sfi 6956 recclnq 7454 prnmaddl 7552 mpomulf 8011 renegcl 8282 nn0ind-raph 9437 iccid 9994 4sqlem1 12529 4sqlem4 12533 4sqlem11 12542 lssvneln0 13872 lss1d 13882 lspsn 13915 rnglidlmmgm 13995 opnneiid 14343 metrest 14685 coseq0negpitopi 15012 bj-nn0suc 15526 bj-inf2vnlem2 15533 bj-nn0sucALT 15540 |
Copyright terms: Public domain | W3C validator |