| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleq1a | Unicode version | ||
| Description: A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.) |
| Ref | Expression |
|---|---|
| eleq1a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2270 |
. 2
| |
| 2 | 1 | biimprcd 160 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-clel 2203 |
| This theorem is referenced by: elex22 2792 elex2 2793 reu6 2969 disjne 3522 ssimaex 5663 fnex 5829 f1ocnv2d 6173 mpoexw 6322 tfrlem8 6427 eroprf 6738 ac6sfi 7021 recclnq 7540 prnmaddl 7638 mpomulf 8097 renegcl 8368 nn0ind-raph 9525 iccid 10082 4sqlem1 12826 4sqlem4 12830 4sqlem11 12839 lssvneln0 14250 lss1d 14260 lspsn 14293 rnglidlmmgm 14373 opnneiid 14751 metrest 15093 coseq0negpitopi 15423 bj-nn0suc 16099 bj-inf2vnlem2 16106 bj-nn0sucALT 16113 |
| Copyright terms: Public domain | W3C validator |