| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleq1a | Unicode version | ||
| Description: A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.) |
| Ref | Expression |
|---|---|
| eleq1a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2268 |
. 2
| |
| 2 | 1 | biimprcd 160 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 |
| This theorem is referenced by: elex22 2787 elex2 2788 reu6 2962 disjne 3514 ssimaex 5640 fnex 5806 f1ocnv2d 6150 mpoexw 6299 tfrlem8 6404 eroprf 6715 ac6sfi 6995 recclnq 7505 prnmaddl 7603 mpomulf 8062 renegcl 8333 nn0ind-raph 9490 iccid 10047 4sqlem1 12711 4sqlem4 12715 4sqlem11 12724 lssvneln0 14135 lss1d 14145 lspsn 14178 rnglidlmmgm 14258 opnneiid 14636 metrest 14978 coseq0negpitopi 15308 bj-nn0suc 15900 bj-inf2vnlem2 15907 bj-nn0sucALT 15914 |
| Copyright terms: Public domain | W3C validator |