ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eleq1a Unicode version

Theorem eleq1a 2184
Description: A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.)
Assertion
Ref Expression
eleq1a  |-  ( A  e.  B  ->  ( C  =  A  ->  C  e.  B ) )

Proof of Theorem eleq1a
StepHypRef Expression
1 eleq1 2175 . 2  |-  ( C  =  A  ->  ( C  e.  B  <->  A  e.  B ) )
21biimprcd 159 1  |-  ( A  e.  B  ->  ( C  =  A  ->  C  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1312    e. wcel 1461
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1404  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-4 1468  ax-17 1487  ax-ial 1495  ax-ext 2095
This theorem depends on definitions:  df-bi 116  df-cleq 2106  df-clel 2109
This theorem is referenced by:  elex22  2670  elex2  2671  reu6  2840  disjne  3380  ssimaex  5434  fnex  5594  f1ocnv2d  5926  tfrlem8  6167  eroprf  6474  ac6sfi  6743  recclnq  7142  prnmaddl  7240  renegcl  7940  nn0ind-raph  9066  iccid  9595  opnneiid  12170  metrest  12489  bj-nn0suc  12845  bj-inf2vnlem2  12852  bj-nn0sucALT  12859
  Copyright terms: Public domain W3C validator