![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eleq1a | Unicode version |
Description: A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
eleq1a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2175 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimprcd 159 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1404 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-4 1468 ax-17 1487 ax-ial 1495 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-cleq 2106 df-clel 2109 |
This theorem is referenced by: elex22 2670 elex2 2671 reu6 2840 disjne 3380 ssimaex 5434 fnex 5594 f1ocnv2d 5926 tfrlem8 6167 eroprf 6474 ac6sfi 6743 recclnq 7142 prnmaddl 7240 renegcl 7940 nn0ind-raph 9066 iccid 9595 opnneiid 12170 metrest 12489 bj-nn0suc 12845 bj-inf2vnlem2 12852 bj-nn0sucALT 12859 |
Copyright terms: Public domain | W3C validator |