| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleq1a | Unicode version | ||
| Description: A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.) |
| Ref | Expression |
|---|---|
| eleq1a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2259 |
. 2
| |
| 2 | 1 | biimprcd 160 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: elex22 2778 elex2 2779 reu6 2953 disjne 3504 ssimaex 5622 fnex 5784 f1ocnv2d 6127 mpoexw 6271 tfrlem8 6376 eroprf 6687 ac6sfi 6959 recclnq 7459 prnmaddl 7557 mpomulf 8016 renegcl 8287 nn0ind-raph 9443 iccid 10000 4sqlem1 12557 4sqlem4 12561 4sqlem11 12570 lssvneln0 13929 lss1d 13939 lspsn 13972 rnglidlmmgm 14052 opnneiid 14400 metrest 14742 coseq0negpitopi 15072 bj-nn0suc 15610 bj-inf2vnlem2 15617 bj-nn0sucALT 15624 |
| Copyright terms: Public domain | W3C validator |