| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elisset | Unicode version | ||
| Description: An element of a class exists. (Contributed by NM, 1-May-1995.) |
| Ref | Expression |
|---|---|
| elisset |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2788 |
. 2
| |
| 2 | isset 2783 |
. 2
| |
| 3 | 1, 2 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-v 2778 |
| This theorem is referenced by: elex22 2792 elex2 2793 ceqsalt 2803 ceqsalg 2805 cgsexg 2812 cgsex2g 2813 cgsex4g 2814 vtoclgft 2828 vtocleg 2851 vtoclegft 2852 spc2egv 2870 spc2gv 2871 spc3egv 2872 spc3gv 2873 eqvincg 2904 tpid3g 3758 iinexgm 4214 copsex2t 4307 copsex2g 4308 ralxfr2d 4529 rexxfr2d 4530 fliftf 5891 eloprabga 6055 ovmpt4g 6091 spc2ed 6342 eroveu 6736 supelti 7130 genpassl 7672 genpassu 7673 eqord1 8591 nn1suc 9090 bj-inex 16042 |
| Copyright terms: Public domain | W3C validator |