Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elisset | Unicode version |
Description: An element of a class exists. (Contributed by NM, 1-May-1995.) |
Ref | Expression |
---|---|
elisset |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2746 | . 2 | |
2 | isset 2741 | . 2 | |
3 | 1, 2 | sylib 122 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1353 wex 1490 wcel 2146 cvv 2735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-v 2737 |
This theorem is referenced by: elex22 2750 elex2 2751 ceqsalt 2761 ceqsalg 2763 cgsexg 2770 cgsex2g 2771 cgsex4g 2772 vtoclgft 2785 vtocleg 2806 vtoclegft 2807 spc2egv 2825 spc2gv 2826 spc3egv 2827 spc3gv 2828 eqvincg 2859 tpid3g 3704 iinexgm 4149 copsex2t 4239 copsex2g 4240 ralxfr2d 4458 rexxfr2d 4459 fliftf 5790 eloprabga 5952 ovmpt4g 5987 spc2ed 6224 eroveu 6616 supelti 6991 genpassl 7498 genpassu 7499 eqord1 8414 nn1suc 8911 bj-inex 14219 |
Copyright terms: Public domain | W3C validator |