ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elisset Unicode version

Theorem elisset 2749
Description: An element of a class exists. (Contributed by NM, 1-May-1995.)
Assertion
Ref Expression
elisset  |-  ( A  e.  V  ->  E. x  x  =  A )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem elisset
StepHypRef Expression
1 elex 2746 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 isset 2741 . 2  |-  ( A  e.  _V  <->  E. x  x  =  A )
31, 2sylib 122 1  |-  ( A  e.  V  ->  E. x  x  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353   E.wex 1490    e. wcel 2146   _Vcvv 2735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-v 2737
This theorem is referenced by:  elex22  2750  elex2  2751  ceqsalt  2761  ceqsalg  2763  cgsexg  2770  cgsex2g  2771  cgsex4g  2772  vtoclgft  2785  vtocleg  2806  vtoclegft  2807  spc2egv  2825  spc2gv  2826  spc3egv  2827  spc3gv  2828  eqvincg  2859  tpid3g  3704  iinexgm  4149  copsex2t  4239  copsex2g  4240  ralxfr2d  4458  rexxfr2d  4459  fliftf  5790  eloprabga  5952  ovmpt4g  5987  spc2ed  6224  eroveu  6616  supelti  6991  genpassl  7498  genpassu  7499  eqord1  8414  nn1suc  8911  bj-inex  14219
  Copyright terms: Public domain W3C validator