| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elisset | Unicode version | ||
| Description: An element of a class exists. (Contributed by NM, 1-May-1995.) | 
| Ref | Expression | 
|---|---|
| elisset | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elex 2774 | 
. 2
 | |
| 2 | isset 2769 | 
. 2
 | |
| 3 | 1, 2 | sylib 122 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 | 
| This theorem is referenced by: elex22 2778 elex2 2779 ceqsalt 2789 ceqsalg 2791 cgsexg 2798 cgsex2g 2799 cgsex4g 2800 vtoclgft 2814 vtocleg 2835 vtoclegft 2836 spc2egv 2854 spc2gv 2855 spc3egv 2856 spc3gv 2857 eqvincg 2888 tpid3g 3737 iinexgm 4187 copsex2t 4278 copsex2g 4279 ralxfr2d 4499 rexxfr2d 4500 fliftf 5846 eloprabga 6009 ovmpt4g 6045 spc2ed 6291 eroveu 6685 supelti 7068 genpassl 7591 genpassu 7592 eqord1 8510 nn1suc 9009 bj-inex 15553 | 
| Copyright terms: Public domain | W3C validator |