| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elisset | Unicode version | ||
| Description: An element of a class exists. (Contributed by NM, 1-May-1995.) |
| Ref | Expression |
|---|---|
| elisset |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 |
. 2
| |
| 2 | isset 2769 |
. 2
| |
| 3 | 1, 2 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: elex22 2778 elex2 2779 ceqsalt 2789 ceqsalg 2791 cgsexg 2798 cgsex2g 2799 cgsex4g 2800 vtoclgft 2814 vtocleg 2835 vtoclegft 2836 spc2egv 2854 spc2gv 2855 spc3egv 2856 spc3gv 2857 eqvincg 2888 tpid3g 3738 iinexgm 4188 copsex2t 4279 copsex2g 4280 ralxfr2d 4500 rexxfr2d 4501 fliftf 5849 eloprabga 6013 ovmpt4g 6049 spc2ed 6300 eroveu 6694 supelti 7077 genpassl 7608 genpassu 7609 eqord1 8527 nn1suc 9026 bj-inex 15637 |
| Copyright terms: Public domain | W3C validator |