| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elisset | Unicode version | ||
| Description: An element of a class exists. (Contributed by NM, 1-May-1995.) |
| Ref | Expression |
|---|---|
| elisset |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2783 |
. 2
| |
| 2 | isset 2778 |
. 2
| |
| 3 | 1, 2 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-v 2774 |
| This theorem is referenced by: elex22 2787 elex2 2788 ceqsalt 2798 ceqsalg 2800 cgsexg 2807 cgsex2g 2808 cgsex4g 2809 vtoclgft 2823 vtocleg 2844 vtoclegft 2845 spc2egv 2863 spc2gv 2864 spc3egv 2865 spc3gv 2866 eqvincg 2897 tpid3g 3748 iinexgm 4199 copsex2t 4290 copsex2g 4291 ralxfr2d 4512 rexxfr2d 4513 fliftf 5870 eloprabga 6034 ovmpt4g 6070 spc2ed 6321 eroveu 6715 supelti 7106 genpassl 7639 genpassu 7640 eqord1 8558 nn1suc 9057 bj-inex 15880 |
| Copyright terms: Public domain | W3C validator |