ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elex22 GIF version

Theorem elex22 2752
Description: If two classes each contain another class, then both contain some set. (Contributed by Alan Sare, 24-Oct-2011.)
Assertion
Ref Expression
elex22 ((𝐴𝐵𝐴𝐶) → ∃𝑥(𝑥𝐵𝑥𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem elex22
StepHypRef Expression
1 eleq1a 2249 . . . 4 (𝐴𝐵 → (𝑥 = 𝐴𝑥𝐵))
2 eleq1a 2249 . . . 4 (𝐴𝐶 → (𝑥 = 𝐴𝑥𝐶))
31, 2anim12ii 343 . . 3 ((𝐴𝐵𝐴𝐶) → (𝑥 = 𝐴 → (𝑥𝐵𝑥𝐶)))
43alrimiv 1874 . 2 ((𝐴𝐵𝐴𝐶) → ∀𝑥(𝑥 = 𝐴 → (𝑥𝐵𝑥𝐶)))
5 elisset 2751 . . 3 (𝐴𝐵 → ∃𝑥 𝑥 = 𝐴)
65adantr 276 . 2 ((𝐴𝐵𝐴𝐶) → ∃𝑥 𝑥 = 𝐴)
7 exim 1599 . 2 (∀𝑥(𝑥 = 𝐴 → (𝑥𝐵𝑥𝐶)) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝑥𝐵𝑥𝐶)))
84, 6, 7sylc 62 1 ((𝐴𝐵𝐴𝐶) → ∃𝑥(𝑥𝐵𝑥𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1351   = wceq 1353  wex 1492  wcel 2148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-v 2739
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator