| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elex22 | GIF version | ||
| Description: If two classes each contain another class, then both contain some set. (Contributed by Alan Sare, 24-Oct-2011.) |
| Ref | Expression |
|---|---|
| elex22 | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1a 2268 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | eleq1a 2268 | . . . 4 ⊢ (𝐴 ∈ 𝐶 → (𝑥 = 𝐴 → 𝑥 ∈ 𝐶)) | |
| 3 | 1, 2 | anim12ii 343 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
| 4 | 3 | alrimiv 1888 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → ∀𝑥(𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
| 5 | elisset 2777 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 = 𝐴) | |
| 6 | 5 | adantr 276 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → ∃𝑥 𝑥 = 𝐴) |
| 7 | exim 1613 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) | |
| 8 | 4, 6, 7 | sylc 62 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 = wceq 1364 ∃wex 1506 ∈ wcel 2167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |