ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnelne1 GIF version

Theorem elnelne1 2444
Description: Two classes are different if they don't contain the same element. (Contributed by AV, 28-Jan-2020.)
Assertion
Ref Expression
elnelne1 ((𝐴𝐵𝐴𝐶) → 𝐵𝐶)

Proof of Theorem elnelne1
StepHypRef Expression
1 df-nel 2436 . 2 (𝐴𝐶 ↔ ¬ 𝐴𝐶)
2 nelne1 2430 . 2 ((𝐴𝐵 ∧ ¬ 𝐴𝐶) → 𝐵𝐶)
31, 2sylan2b 285 1 ((𝐴𝐵𝐴𝐶) → 𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wcel 2141  wne 2340  wnel 2435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-cleq 2163  df-clel 2166  df-ne 2341  df-nel 2436
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator