Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elnelne1 | GIF version |
Description: Two classes are different if they don't contain the same element. (Contributed by AV, 28-Jan-2020.) |
Ref | Expression |
---|---|
elnelne1 | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∉ 𝐶) → 𝐵 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 2423 | . 2 ⊢ (𝐴 ∉ 𝐶 ↔ ¬ 𝐴 ∈ 𝐶) | |
2 | nelne1 2417 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐵 ≠ 𝐶) | |
3 | 1, 2 | sylan2b 285 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∉ 𝐶) → 𝐵 ≠ 𝐶) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∈ wcel 2128 ≠ wne 2327 ∉ wnel 2422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-4 1490 ax-17 1506 ax-ial 1514 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-cleq 2150 df-clel 2153 df-ne 2328 df-nel 2423 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |