ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnelne1 GIF version

Theorem elnelne1 2504
Description: Two classes are different if they don't contain the same element. (Contributed by AV, 28-Jan-2020.)
Assertion
Ref Expression
elnelne1 ((𝐴𝐵𝐴𝐶) → 𝐵𝐶)

Proof of Theorem elnelne1
StepHypRef Expression
1 df-nel 2496 . 2 (𝐴𝐶 ↔ ¬ 𝐴𝐶)
2 nelne1 2490 . 2 ((𝐴𝐵 ∧ ¬ 𝐴𝐶) → 𝐵𝐶)
31, 2sylan2b 287 1 ((𝐴𝐵𝐴𝐶) → 𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wcel 2200  wne 2400  wnel 2495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-cleq 2222  df-clel 2225  df-ne 2401  df-nel 2496
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator