ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnelne1 GIF version

Theorem elnelne1 2461
Description: Two classes are different if they don't contain the same element. (Contributed by AV, 28-Jan-2020.)
Assertion
Ref Expression
elnelne1 ((𝐴𝐵𝐴𝐶) → 𝐵𝐶)

Proof of Theorem elnelne1
StepHypRef Expression
1 df-nel 2453 . 2 (𝐴𝐶 ↔ ¬ 𝐴𝐶)
2 nelne1 2447 . 2 ((𝐴𝐵 ∧ ¬ 𝐴𝐶) → 𝐵𝐶)
31, 2sylan2b 287 1 ((𝐴𝐵𝐴𝐶) → 𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wcel 2158  wne 2357  wnel 2452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1457  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-4 1520  ax-17 1536  ax-ial 1544  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-cleq 2180  df-clel 2183  df-ne 2358  df-nel 2453
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator