Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nelne1 | Unicode version |
Description: Two classes are different if they don't contain the same element. (Contributed by NM, 3-Feb-2012.) |
Ref | Expression |
---|---|
nelne1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2218 | . . . 4 | |
2 | 1 | biimpcd 158 | . . 3 |
3 | 2 | necon3bd 2367 | . 2 |
4 | 3 | imp 123 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wceq 1332 wcel 2125 wne 2324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1424 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-4 1487 ax-17 1503 ax-ial 1511 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-cleq 2147 df-clel 2150 df-ne 2325 |
This theorem is referenced by: elnelne1 2428 difsnb 3695 |
Copyright terms: Public domain | W3C validator |