ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nelne1 Unicode version

Theorem nelne1 2430
Description: Two classes are different if they don't contain the same element. (Contributed by NM, 3-Feb-2012.)
Assertion
Ref Expression
nelne1  |-  ( ( A  e.  B  /\  -.  A  e.  C
)  ->  B  =/=  C )

Proof of Theorem nelne1
StepHypRef Expression
1 eleq2 2234 . . . 4  |-  ( B  =  C  ->  ( A  e.  B  <->  A  e.  C ) )
21biimpcd 158 . . 3  |-  ( A  e.  B  ->  ( B  =  C  ->  A  e.  C ) )
32necon3bd 2383 . 2  |-  ( A  e.  B  ->  ( -.  A  e.  C  ->  B  =/=  C ) )
43imp 123 1  |-  ( ( A  e.  B  /\  -.  A  e.  C
)  ->  B  =/=  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141    =/= wne 2340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-cleq 2163  df-clel 2166  df-ne 2341
This theorem is referenced by:  elnelne1  2444  difsnb  3723
  Copyright terms: Public domain W3C validator