ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnninfeq Unicode version

Theorem nnnninfeq 7120
Description: Mapping of a natural number to an element of ℕ. (Contributed by Jim Kingdon, 4-Aug-2022.)
Hypotheses
Ref Expression
nnnninfeq.p  |-  ( ph  ->  P  e. )
nnnninfeq.n  |-  ( ph  ->  N  e.  om )
nnnninfeq.1  |-  ( ph  ->  A. x  e.  N  ( P `  x )  =  1o )
nnnninfeq.0  |-  ( ph  ->  ( P `  N
)  =  (/) )
Assertion
Ref Expression
nnnninfeq  |-  ( ph  ->  P  =  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) )
Distinct variable groups:    i, N    x, N    x, P    ph, i
Allowed substitution hints:    ph( x)    P( i)

Proof of Theorem nnnninfeq
Dummy variables  j  k  w  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnninfeq.p . . . 4  |-  ( ph  ->  P  e. )
2 nninff 7115 . . . 4  |-  ( P  e.  ->  P : om --> 2o )
31, 2syl 14 . . 3  |-  ( ph  ->  P : om --> 2o )
43ffnd 5362 . 2  |-  ( ph  ->  P  Fn  om )
5 1lt2o 6437 . . . . . 6  |-  1o  e.  2o
65a1i 9 . . . . 5  |-  ( (
ph  /\  i  e.  om )  ->  1o  e.  2o )
7 0lt2o 6436 . . . . . 6  |-  (/)  e.  2o
87a1i 9 . . . . 5  |-  ( (
ph  /\  i  e.  om )  ->  (/)  e.  2o )
9 simpr 110 . . . . . 6  |-  ( (
ph  /\  i  e.  om )  ->  i  e.  om )
10 nnnninfeq.n . . . . . . 7  |-  ( ph  ->  N  e.  om )
1110adantr 276 . . . . . 6  |-  ( (
ph  /\  i  e.  om )  ->  N  e.  om )
12 nndcel 6495 . . . . . 6  |-  ( ( i  e.  om  /\  N  e.  om )  -> DECID  i  e.  N )
139, 11, 12syl2anc 411 . . . . 5  |-  ( (
ph  /\  i  e.  om )  -> DECID  i  e.  N
)
146, 8, 13ifcldcd 3569 . . . 4  |-  ( (
ph  /\  i  e.  om )  ->  if (
i  e.  N ,  1o ,  (/) )  e.  2o )
1514ralrimiva 2550 . . 3  |-  ( ph  ->  A. i  e.  om  if ( i  e.  N ,  1o ,  (/) )  e.  2o )
16 eqid 2177 . . . 4  |-  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  ( i  e. 
om  |->  if ( i  e.  N ,  1o ,  (/) ) )
1716fnmpt 5338 . . 3  |-  ( A. i  e.  om  if ( i  e.  N ,  1o ,  (/) )  e.  2o  ->  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  Fn 
om )
1815, 17syl 14 . 2  |-  ( ph  ->  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  Fn  om )
19 fveq2 5511 . . . . . . 7  |-  ( w  =  (/)  ->  ( P `
 w )  =  ( P `  (/) ) )
20 eleq1 2240 . . . . . . . 8  |-  ( w  =  (/)  ->  ( w  e.  N  <->  (/)  e.  N
) )
2120ifbid 3555 . . . . . . 7  |-  ( w  =  (/)  ->  if ( w  e.  N ,  1o ,  (/) )  =  if ( (/)  e.  N ,  1o ,  (/) ) )
2219, 21eqeq12d 2192 . . . . . 6  |-  ( w  =  (/)  ->  ( ( P `  w )  =  if ( w  e.  N ,  1o ,  (/) )  <->  ( P `  (/) )  =  if ( (/)  e.  N ,  1o ,  (/) ) ) )
2322imbi2d 230 . . . . 5  |-  ( w  =  (/)  ->  ( (
ph  ->  ( P `  w )  =  if ( w  e.  N ,  1o ,  (/) ) )  <-> 
( ph  ->  ( P `
 (/) )  =  if ( (/)  e.  N ,  1o ,  (/) ) ) ) )
24 fveq2 5511 . . . . . . 7  |-  ( w  =  k  ->  ( P `  w )  =  ( P `  k ) )
25 eleq1w 2238 . . . . . . . 8  |-  ( w  =  k  ->  (
w  e.  N  <->  k  e.  N ) )
2625ifbid 3555 . . . . . . 7  |-  ( w  =  k  ->  if ( w  e.  N ,  1o ,  (/) )  =  if ( k  e.  N ,  1o ,  (/) ) )
2724, 26eqeq12d 2192 . . . . . 6  |-  ( w  =  k  ->  (
( P `  w
)  =  if ( w  e.  N ,  1o ,  (/) )  <->  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) ) )
2827imbi2d 230 . . . . 5  |-  ( w  =  k  ->  (
( ph  ->  ( P `
 w )  =  if ( w  e.  N ,  1o ,  (/) ) )  <->  ( ph  ->  ( P `  k
)  =  if ( k  e.  N ,  1o ,  (/) ) ) ) )
29 fveq2 5511 . . . . . . 7  |-  ( w  =  suc  k  -> 
( P `  w
)  =  ( P `
 suc  k )
)
30 eleq1 2240 . . . . . . . 8  |-  ( w  =  suc  k  -> 
( w  e.  N  <->  suc  k  e.  N ) )
3130ifbid 3555 . . . . . . 7  |-  ( w  =  suc  k  ->  if ( w  e.  N ,  1o ,  (/) )  =  if ( suc  k  e.  N ,  1o ,  (/) ) )
3229, 31eqeq12d 2192 . . . . . 6  |-  ( w  =  suc  k  -> 
( ( P `  w )  =  if ( w  e.  N ,  1o ,  (/) )  <->  ( P `  suc  k )  =  if ( suc  k  e.  N ,  1o ,  (/) ) ) )
3332imbi2d 230 . . . . 5  |-  ( w  =  suc  k  -> 
( ( ph  ->  ( P `  w )  =  if ( w  e.  N ,  1o ,  (/) ) )  <->  ( ph  ->  ( P `  suc  k )  =  if ( suc  k  e.  N ,  1o ,  (/) ) ) ) )
34 fveq2 5511 . . . . . . 7  |-  ( w  =  j  ->  ( P `  w )  =  ( P `  j ) )
35 eleq1w 2238 . . . . . . . 8  |-  ( w  =  j  ->  (
w  e.  N  <->  j  e.  N ) )
3635ifbid 3555 . . . . . . 7  |-  ( w  =  j  ->  if ( w  e.  N ,  1o ,  (/) )  =  if ( j  e.  N ,  1o ,  (/) ) )
3734, 36eqeq12d 2192 . . . . . 6  |-  ( w  =  j  ->  (
( P `  w
)  =  if ( w  e.  N ,  1o ,  (/) )  <->  ( P `  j )  =  if ( j  e.  N ,  1o ,  (/) ) ) )
3837imbi2d 230 . . . . 5  |-  ( w  =  j  ->  (
( ph  ->  ( P `
 w )  =  if ( w  e.  N ,  1o ,  (/) ) )  <->  ( ph  ->  ( P `  j
)  =  if ( j  e.  N ,  1o ,  (/) ) ) ) )
39 noel 3426 . . . . . . . . 9  |-  -.  (/)  e.  (/)
40 simpr 110 . . . . . . . . . 10  |-  ( (
ph  /\  N  =  (/) )  ->  N  =  (/) )
4140eleq2d 2247 . . . . . . . . 9  |-  ( (
ph  /\  N  =  (/) )  ->  ( (/)  e.  N  <->  (/)  e.  (/) ) )
4239, 41mtbiri 675 . . . . . . . 8  |-  ( (
ph  /\  N  =  (/) )  ->  -.  (/)  e.  N
)
4342iffalsed 3544 . . . . . . 7  |-  ( (
ph  /\  N  =  (/) )  ->  if ( (/) 
e.  N ,  1o ,  (/) )  =  (/) )
44 nnnninfeq.0 . . . . . . . 8  |-  ( ph  ->  ( P `  N
)  =  (/) )
4544adantr 276 . . . . . . 7  |-  ( (
ph  /\  N  =  (/) )  ->  ( P `  N )  =  (/) )
4640fveq2d 5515 . . . . . . 7  |-  ( (
ph  /\  N  =  (/) )  ->  ( P `  N )  =  ( P `  (/) ) )
4743, 45, 463eqtr2rd 2217 . . . . . 6  |-  ( (
ph  /\  N  =  (/) )  ->  ( P `  (/) )  =  if ( (/)  e.  N ,  1o ,  (/) ) )
48 fveq2 5511 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( P `
 x )  =  ( P `  (/) ) )
4948eqeq1d 2186 . . . . . . . 8  |-  ( x  =  (/)  ->  ( ( P `  x )  =  1o  <->  ( P `  (/) )  =  1o ) )
50 nnnninfeq.1 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  N  ( P `  x )  =  1o )
5150adantr 276 . . . . . . . 8  |-  ( (
ph  /\  (/)  e.  N
)  ->  A. x  e.  N  ( P `  x )  =  1o )
52 simpr 110 . . . . . . . 8  |-  ( (
ph  /\  (/)  e.  N
)  ->  (/)  e.  N
)
5349, 51, 52rspcdva 2846 . . . . . . 7  |-  ( (
ph  /\  (/)  e.  N
)  ->  ( P `  (/) )  =  1o )
5452iftrued 3541 . . . . . . 7  |-  ( (
ph  /\  (/)  e.  N
)  ->  if ( (/) 
e.  N ,  1o ,  (/) )  =  1o )
5553, 54eqtr4d 2213 . . . . . 6  |-  ( (
ph  /\  (/)  e.  N
)  ->  ( P `  (/) )  =  if ( (/)  e.  N ,  1o ,  (/) ) )
56 0elnn 4615 . . . . . . 7  |-  ( N  e.  om  ->  ( N  =  (/)  \/  (/)  e.  N
) )
5710, 56syl 14 . . . . . 6  |-  ( ph  ->  ( N  =  (/)  \/  (/)  e.  N ) )
5847, 55, 57mpjaodan 798 . . . . 5  |-  ( ph  ->  ( P `  (/) )  =  if ( (/)  e.  N ,  1o ,  (/) ) )
59 fveq2 5511 . . . . . . . . . . 11  |-  ( x  =  suc  k  -> 
( P `  x
)  =  ( P `
 suc  k )
)
6059eqeq1d 2186 . . . . . . . . . 10  |-  ( x  =  suc  k  -> 
( ( P `  x )  =  1o  <->  ( P `  suc  k
)  =  1o ) )
6150ad3antlr 493 . . . . . . . . . 10  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  /\  suc  k  e.  N
)  ->  A. x  e.  N  ( P `  x )  =  1o )
62 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  /\  suc  k  e.  N
)  ->  suc  k  e.  N )
6360, 61, 62rspcdva 2846 . . . . . . . . 9  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  /\  suc  k  e.  N
)  ->  ( P `  suc  k )  =  1o )
6462iftrued 3541 . . . . . . . . 9  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  /\  suc  k  e.  N
)  ->  if ( suc  k  e.  N ,  1o ,  (/) )  =  1o )
6563, 64eqtr4d 2213 . . . . . . . 8  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  /\  suc  k  e.  N
)  ->  ( P `  suc  k )  =  if ( suc  k  e.  N ,  1o ,  (/) ) )
6644ad3antlr 493 . . . . . . . . 9  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  /\  suc  k  =  N
)  ->  ( P `  N )  =  (/) )
67 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  /\  suc  k  =  N
)  ->  suc  k  =  N )
6867fveq2d 5515 . . . . . . . . 9  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  /\  suc  k  =  N
)  ->  ( P `  suc  k )  =  ( P `  N
) )
6910ad2antlr 489 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  ->  N  e.  om )
70 nnord 4608 . . . . . . . . . . . . 13  |-  ( N  e.  om  ->  Ord  N )
71 ordirr 4538 . . . . . . . . . . . . 13  |-  ( Ord 
N  ->  -.  N  e.  N )
7269, 70, 713syl 17 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  ->  -.  N  e.  N )
7372adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  /\  suc  k  =  N
)  ->  -.  N  e.  N )
7467, 73eqneltrd 2273 . . . . . . . . . 10  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  /\  suc  k  =  N
)  ->  -.  suc  k  e.  N )
7574iffalsed 3544 . . . . . . . . 9  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  /\  suc  k  =  N
)  ->  if ( suc  k  e.  N ,  1o ,  (/) )  =  (/) )
7666, 68, 753eqtr4d 2220 . . . . . . . 8  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  /\  suc  k  =  N
)  ->  ( P `  suc  k )  =  if ( suc  k  e.  N ,  1o ,  (/) ) )
77 suceq 4399 . . . . . . . . . . . . . 14  |-  ( j  =  k  ->  suc  j  =  suc  k )
7877fveq2d 5515 . . . . . . . . . . . . 13  |-  ( j  =  k  ->  ( P `  suc  j )  =  ( P `  suc  k ) )
79 fveq2 5511 . . . . . . . . . . . . 13  |-  ( j  =  k  ->  ( P `  j )  =  ( P `  k ) )
8078, 79sseq12d 3186 . . . . . . . . . . . 12  |-  ( j  =  k  ->  (
( P `  suc  j )  C_  ( P `  j )  <->  ( P `  suc  k
)  C_  ( P `  k ) ) )
811ad3antlr 493 . . . . . . . . . . . . 13  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  /\  N  e.  suc  k )  ->  P  e. )
82 fveq1 5510 . . . . . . . . . . . . . . . . 17  |-  ( f  =  P  ->  (
f `  suc  j )  =  ( P `  suc  j ) )
83 fveq1 5510 . . . . . . . . . . . . . . . . 17  |-  ( f  =  P  ->  (
f `  j )  =  ( P `  j ) )
8482, 83sseq12d 3186 . . . . . . . . . . . . . . . 16  |-  ( f  =  P  ->  (
( f `  suc  j )  C_  (
f `  j )  <->  ( P `  suc  j
)  C_  ( P `  j ) ) )
8584ralbidv 2477 . . . . . . . . . . . . . . 15  |-  ( f  =  P  ->  ( A. j  e.  om  ( f `  suc  j )  C_  (
f `  j )  <->  A. j  e.  om  ( P `  suc  j ) 
C_  ( P `  j ) ) )
86 df-nninf 7113 . . . . . . . . . . . . . . 15  |-  =  { f  e.  ( 2o  ^m  om )  |  A. j  e.  om  ( f `  suc  j )  C_  (
f `  j ) }
8785, 86elrab2 2896 . . . . . . . . . . . . . 14  |-  ( P  e.  <->  ( P  e.  ( 2o 
^m  om )  /\  A. j  e.  om  ( P `  suc  j ) 
C_  ( P `  j ) ) )
8887simprbi 275 . . . . . . . . . . . . 13  |-  ( P  e.  ->  A. j  e.  om  ( P `  suc  j
)  C_  ( P `  j ) )
8981, 88syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  /\  N  e.  suc  k )  ->  A. j  e.  om  ( P `  suc  j
)  C_  ( P `  j ) )
90 simplll 533 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  /\  N  e.  suc  k )  ->  k  e.  om )
9180, 89, 90rspcdva 2846 . . . . . . . . . . 11  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  /\  N  e.  suc  k )  ->  ( P `  suc  k )  C_  ( P `  k )
)
92 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  /\  N  e.  suc  k )  ->  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )
93 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  /\  N  e.  suc  k )  ->  N  e.  suc  k )
94 nnord 4608 . . . . . . . . . . . . . . . 16  |-  ( k  e.  om  ->  Ord  k )
95 ordtr 4375 . . . . . . . . . . . . . . . 16  |-  ( Ord  k  ->  Tr  k
)
96 trsucss 4420 . . . . . . . . . . . . . . . 16  |-  ( Tr  k  ->  ( N  e.  suc  k  ->  N  C_  k ) )
9794, 95, 963syl 17 . . . . . . . . . . . . . . 15  |-  ( k  e.  om  ->  ( N  e.  suc  k  ->  N  C_  k ) )
9890, 93, 97sylc 62 . . . . . . . . . . . . . 14  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  /\  N  e.  suc  k )  ->  N  C_  k
)
9969adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  /\  N  e.  suc  k )  ->  N  e.  om )
100 nntri1 6491 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  om  /\  k  e.  om )  ->  ( N  C_  k  <->  -.  k  e.  N ) )
10199, 90, 100syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  /\  N  e.  suc  k )  ->  ( N  C_  k 
<->  -.  k  e.  N
) )
10298, 101mpbid 147 . . . . . . . . . . . . 13  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  /\  N  e.  suc  k )  ->  -.  k  e.  N )
103102iffalsed 3544 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  /\  N  e.  suc  k )  ->  if ( k  e.  N ,  1o ,  (/) )  =  (/) )
10492, 103eqtrd 2210 . . . . . . . . . . 11  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  /\  N  e.  suc  k )  ->  ( P `  k )  =  (/) )
10591, 104sseqtrd 3193 . . . . . . . . . 10  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  /\  N  e.  suc  k )  ->  ( P `  suc  k )  C_  (/) )
106 ss0 3463 . . . . . . . . . 10  |-  ( ( P `  suc  k
)  C_  (/)  ->  ( P `  suc  k )  =  (/) )
107105, 106syl 14 . . . . . . . . 9  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  /\  N  e.  suc  k )  ->  ( P `  suc  k )  =  (/) )
108 ordn2lp 4541 . . . . . . . . . . . 12  |-  ( Ord 
N  ->  -.  ( N  e.  suc  k  /\  suc  k  e.  N
) )
10999, 70, 1083syl 17 . . . . . . . . . . 11  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  /\  N  e.  suc  k )  ->  -.  ( N  e.  suc  k  /\  suc  k  e.  N )
)
110 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( ( ( k  e.  om  /\  ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  /\  N  e.  suc  k )  /\  suc  k  e.  N )  ->  N  e.  suc  k
)
111 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ( k  e.  om  /\  ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  /\  N  e.  suc  k )  /\  suc  k  e.  N )  ->  suc  k  e.  N
)
112110, 111jca 306 . . . . . . . . . . 11  |-  ( ( ( ( ( k  e.  om  /\  ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  /\  N  e.  suc  k )  /\  suc  k  e.  N )  ->  ( N  e.  suc  k  /\  suc  k  e.  N ) )
113109, 112mtand 665 . . . . . . . . . 10  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  /\  N  e.  suc  k )  ->  -.  suc  k  e.  N )
114113iffalsed 3544 . . . . . . . . 9  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  /\  N  e.  suc  k )  ->  if ( suc  k  e.  N ,  1o ,  (/) )  =  (/) )
115107, 114eqtr4d 2213 . . . . . . . 8  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  /\  N  e.  suc  k )  ->  ( P `  suc  k )  =  if ( suc  k  e.  N ,  1o ,  (/) ) )
116 peano2 4591 . . . . . . . . . 10  |-  ( k  e.  om  ->  suc  k  e.  om )
117116ad2antrr 488 . . . . . . . . 9  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  ->  suc  k  e.  om )
118 nntri3or 6488 . . . . . . . . 9  |-  ( ( suc  k  e.  om  /\  N  e.  om )  ->  ( suc  k  e.  N  \/  suc  k  =  N  \/  N  e.  suc  k ) )
119117, 69, 118syl2anc 411 . . . . . . . 8  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  ->  ( suc  k  e.  N  \/  suc  k  =  N  \/  N  e.  suc  k ) )
12065, 76, 115, 119mpjao3dan 1307 . . . . . . 7  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( P `  k )  =  if ( k  e.  N ,  1o ,  (/) ) )  ->  ( P `  suc  k )  =  if ( suc  k  e.  N ,  1o ,  (/) ) )
121120exp31 364 . . . . . 6  |-  ( k  e.  om  ->  ( ph  ->  ( ( P `
 k )  =  if ( k  e.  N ,  1o ,  (/) )  ->  ( P `  suc  k )  =  if ( suc  k  e.  N ,  1o ,  (/) ) ) ) )
122121a2d 26 . . . . 5  |-  ( k  e.  om  ->  (
( ph  ->  ( P `
 k )  =  if ( k  e.  N ,  1o ,  (/) ) )  ->  ( ph  ->  ( P `  suc  k )  =  if ( suc  k  e.  N ,  1o ,  (/) ) ) ) )
12323, 28, 33, 38, 58, 122finds 4596 . . . 4  |-  ( j  e.  om  ->  ( ph  ->  ( P `  j )  =  if ( j  e.  N ,  1o ,  (/) ) ) )
124123impcom 125 . . 3  |-  ( (
ph  /\  j  e.  om )  ->  ( P `  j )  =  if ( j  e.  N ,  1o ,  (/) ) )
125 simpr 110 . . . 4  |-  ( (
ph  /\  j  e.  om )  ->  j  e.  om )
1265a1i 9 . . . . 5  |-  ( (
ph  /\  j  e.  om )  ->  1o  e.  2o )
1277a1i 9 . . . . 5  |-  ( (
ph  /\  j  e.  om )  ->  (/)  e.  2o )
12810adantr 276 . . . . . 6  |-  ( (
ph  /\  j  e.  om )  ->  N  e.  om )
129 nndcel 6495 . . . . . 6  |-  ( ( j  e.  om  /\  N  e.  om )  -> DECID  j  e.  N )
130125, 128, 129syl2anc 411 . . . . 5  |-  ( (
ph  /\  j  e.  om )  -> DECID  j  e.  N
)
131126, 127, 130ifcldcd 3569 . . . 4  |-  ( (
ph  /\  j  e.  om )  ->  if (
j  e.  N ,  1o ,  (/) )  e.  2o )
132 eleq1w 2238 . . . . . 6  |-  ( i  =  j  ->  (
i  e.  N  <->  j  e.  N ) )
133132ifbid 3555 . . . . 5  |-  ( i  =  j  ->  if ( i  e.  N ,  1o ,  (/) )  =  if ( j  e.  N ,  1o ,  (/) ) )
134133, 16fvmptg 5588 . . . 4  |-  ( ( j  e.  om  /\  if ( j  e.  N ,  1o ,  (/) )  e.  2o )  ->  (
( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) `
 j )  =  if ( j  e.  N ,  1o ,  (/) ) )
135125, 131, 134syl2anc 411 . . 3  |-  ( (
ph  /\  j  e.  om )  ->  ( (
i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) `
 j )  =  if ( j  e.  N ,  1o ,  (/) ) )
136124, 135eqtr4d 2213 . 2  |-  ( (
ph  /\  j  e.  om )  ->  ( P `  j )  =  ( ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) `
 j ) )
1374, 18, 136eqfnfvd 5612 1  |-  ( ph  ->  P  =  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    \/ w3o 977    = wceq 1353    e. wcel 2148   A.wral 2455    C_ wss 3129   (/)c0 3422   ifcif 3534    |-> cmpt 4061   Tr wtr 4098   Ord word 4359   suc csuc 4362   omcom 4586    Fn wfn 5207   -->wf 5208   ` cfv 5212  (class class class)co 5869   1oc1o 6404   2oc2o 6405    ^m cmap 6642  ℕxnninf 7112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1o 6411  df-2o 6412  df-map 6644  df-nninf 7113
This theorem is referenced by:  nnnninfeq2  7121  nninfisollem0  7122  nninfalllem1  14413  nninfsellemeq  14419
  Copyright terms: Public domain W3C validator