ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodunsn Unicode version

Theorem fprodunsn 11505
Description: Multiply in an additional term in a finite product. See also fprodsplitsn 11534 which is the same but with a  F/ k
ph hypothesis in place of the distinct variable condition between  ph and  k. (Contributed by Jim Kingdon, 16-Aug-2024.)
Hypotheses
Ref Expression
fprodunsn.f  |-  F/_ k D
fprodunsn.a  |-  ( ph  ->  A  e.  Fin )
fprodunsn.b  |-  ( ph  ->  B  e.  V )
fprodunsn.ba  |-  ( ph  ->  -.  B  e.  A
)
fprodunsn.ccl  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
fprodunsn.dcl  |-  ( ph  ->  D  e.  CC )
fprodunsn.d  |-  ( k  =  B  ->  C  =  D )
Assertion
Ref Expression
fprodunsn  |-  ( ph  ->  prod_ k  e.  ( A  u.  { B } ) C  =  ( prod_ k  e.  A  C  x.  D )
)
Distinct variable groups:    A, k    B, k    k, V    ph, k
Allowed substitution hints:    C( k)    D( k)

Proof of Theorem fprodunsn
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 fprodunsn.ba . . . 4  |-  ( ph  ->  -.  B  e.  A
)
2 disjsn 3622 . . . 4  |-  ( ( A  i^i  { B } )  =  (/)  <->  -.  B  e.  A )
31, 2sylibr 133 . . 3  |-  ( ph  ->  ( A  i^i  { B } )  =  (/) )
4 eqidd 2158 . . 3  |-  ( ph  ->  ( A  u.  { B } )  =  ( A  u.  { B } ) )
5 fprodunsn.a . . . 4  |-  ( ph  ->  A  e.  Fin )
6 fprodunsn.b . . . 4  |-  ( ph  ->  B  e.  V )
7 unsnfi 6864 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  ->  ( A  u.  { B } )  e.  Fin )
85, 6, 1, 7syl3anc 1220 . . 3  |-  ( ph  ->  ( A  u.  { B } )  e.  Fin )
9 simpr 109 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( A  u.  { B } ) )  /\  j  e.  A )  ->  j  e.  A )
109orcd 723 . . . . . 6  |-  ( ( ( ph  /\  j  e.  ( A  u.  { B } ) )  /\  j  e.  A )  ->  ( j  e.  A  \/  -.  j  e.  A
) )
11 df-dc 821 . . . . . 6  |-  (DECID  j  e.  A  <->  ( j  e.  A  \/  -.  j  e.  A ) )
1210, 11sylibr 133 . . . . 5  |-  ( ( ( ph  /\  j  e.  ( A  u.  { B } ) )  /\  j  e.  A )  -> DECID  j  e.  A )
13 simpr 109 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( A  u.  { B } ) )  /\  j  e.  { B } )  ->  j  e.  { B } )
14 velsn 3577 . . . . . . . . 9  |-  ( j  e.  { B }  <->  j  =  B )
1513, 14sylib 121 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( A  u.  { B } ) )  /\  j  e.  { B } )  ->  j  =  B )
161ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( A  u.  { B } ) )  /\  j  e.  { B } )  ->  -.  B  e.  A )
1715, 16eqneltrd 2253 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( A  u.  { B } ) )  /\  j  e.  { B } )  ->  -.  j  e.  A )
1817olcd 724 . . . . . 6  |-  ( ( ( ph  /\  j  e.  ( A  u.  { B } ) )  /\  j  e.  { B } )  ->  (
j  e.  A  \/  -.  j  e.  A
) )
1918, 11sylibr 133 . . . . 5  |-  ( ( ( ph  /\  j  e.  ( A  u.  { B } ) )  /\  j  e.  { B } )  -> DECID  j  e.  A
)
20 elun 3248 . . . . . . 7  |-  ( j  e.  ( A  u.  { B } )  <->  ( j  e.  A  \/  j  e.  { B } ) )
2120biimpi 119 . . . . . 6  |-  ( j  e.  ( A  u.  { B } )  -> 
( j  e.  A  \/  j  e.  { B } ) )
2221adantl 275 . . . . 5  |-  ( (
ph  /\  j  e.  ( A  u.  { B } ) )  -> 
( j  e.  A  \/  j  e.  { B } ) )
2312, 19, 22mpjaodan 788 . . . 4  |-  ( (
ph  /\  j  e.  ( A  u.  { B } ) )  -> DECID  j  e.  A )
2423ralrimiva 2530 . . 3  |-  ( ph  ->  A. j  e.  ( A  u.  { B } )DECID  j  e.  A )
25 fprodunsn.ccl . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
2625adantlr 469 . . . 4  |-  ( ( ( ph  /\  k  e.  ( A  u.  { B } ) )  /\  k  e.  A )  ->  C  e.  CC )
27 elsni 3578 . . . . . . 7  |-  ( k  e.  { B }  ->  k  =  B )
2827adantl 275 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( A  u.  { B } ) )  /\  k  e.  { B } )  ->  k  =  B )
29 fprodunsn.d . . . . . 6  |-  ( k  =  B  ->  C  =  D )
3028, 29syl 14 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( A  u.  { B } ) )  /\  k  e.  { B } )  ->  C  =  D )
31 fprodunsn.dcl . . . . . 6  |-  ( ph  ->  D  e.  CC )
3231ad2antrr 480 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( A  u.  { B } ) )  /\  k  e.  { B } )  ->  D  e.  CC )
3330, 32eqeltrd 2234 . . . 4  |-  ( ( ( ph  /\  k  e.  ( A  u.  { B } ) )  /\  k  e.  { B } )  ->  C  e.  CC )
34 elun 3248 . . . . . 6  |-  ( k  e.  ( A  u.  { B } )  <->  ( k  e.  A  \/  k  e.  { B } ) )
3534biimpi 119 . . . . 5  |-  ( k  e.  ( A  u.  { B } )  -> 
( k  e.  A  \/  k  e.  { B } ) )
3635adantl 275 . . . 4  |-  ( (
ph  /\  k  e.  ( A  u.  { B } ) )  -> 
( k  e.  A  \/  k  e.  { B } ) )
3726, 33, 36mpjaodan 788 . . 3  |-  ( (
ph  /\  k  e.  ( A  u.  { B } ) )  ->  C  e.  CC )
383, 4, 8, 24, 37fprodsplitdc 11497 . 2  |-  ( ph  ->  prod_ k  e.  ( A  u.  { B } ) C  =  ( prod_ k  e.  A  C  x.  prod_ k  e. 
{ B } C
) )
39 fprodunsn.f . . . . 5  |-  F/_ k D
4039, 29prodsnf 11493 . . . 4  |-  ( ( B  e.  V  /\  D  e.  CC )  ->  prod_ k  e.  { B } C  =  D )
416, 31, 40syl2anc 409 . . 3  |-  ( ph  ->  prod_ k  e.  { B } C  =  D )
4241oveq2d 5841 . 2  |-  ( ph  ->  ( prod_ k  e.  A  C  x.  prod_ k  e. 
{ B } C
)  =  ( prod_
k  e.  A  C  x.  D ) )
4338, 42eqtrd 2190 1  |-  ( ph  ->  prod_ k  e.  ( A  u.  { B } ) C  =  ( prod_ k  e.  A  C  x.  D )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 820    = wceq 1335    e. wcel 2128   F/_wnfc 2286    u. cun 3100    i^i cin 3101   (/)c0 3394   {csn 3560  (class class class)co 5825   Fincfn 6686   CCcc 7731    x. cmul 7738   prod_cprod 11451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4080  ax-sep 4083  ax-nul 4091  ax-pow 4136  ax-pr 4170  ax-un 4394  ax-setind 4497  ax-iinf 4548  ax-cnex 7824  ax-resscn 7825  ax-1cn 7826  ax-1re 7827  ax-icn 7828  ax-addcl 7829  ax-addrcl 7830  ax-mulcl 7831  ax-mulrcl 7832  ax-addcom 7833  ax-mulcom 7834  ax-addass 7835  ax-mulass 7836  ax-distr 7837  ax-i2m1 7838  ax-0lt1 7839  ax-1rid 7840  ax-0id 7841  ax-rnegex 7842  ax-precex 7843  ax-cnre 7844  ax-pre-ltirr 7845  ax-pre-ltwlin 7846  ax-pre-lttrn 7847  ax-pre-apti 7848  ax-pre-ltadd 7849  ax-pre-mulgt0 7850  ax-pre-mulext 7851  ax-arch 7852  ax-caucvg 7853
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-int 3809  df-iun 3852  df-br 3967  df-opab 4027  df-mpt 4028  df-tr 4064  df-id 4254  df-po 4257  df-iso 4258  df-iord 4327  df-on 4329  df-ilim 4330  df-suc 4332  df-iom 4551  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-res 4599  df-ima 4600  df-iota 5136  df-fun 5173  df-fn 5174  df-f 5175  df-f1 5176  df-fo 5177  df-f1o 5178  df-fv 5179  df-isom 5180  df-riota 5781  df-ov 5828  df-oprab 5829  df-mpo 5830  df-1st 6089  df-2nd 6090  df-recs 6253  df-irdg 6318  df-frec 6339  df-1o 6364  df-oadd 6368  df-er 6481  df-en 6687  df-dom 6688  df-fin 6689  df-pnf 7915  df-mnf 7916  df-xr 7917  df-ltxr 7918  df-le 7919  df-sub 8049  df-neg 8050  df-reap 8451  df-ap 8458  df-div 8547  df-inn 8835  df-2 8893  df-3 8894  df-4 8895  df-n0 9092  df-z 9169  df-uz 9441  df-q 9530  df-rp 9562  df-fz 9914  df-fzo 10046  df-seqfrec 10349  df-exp 10423  df-ihash 10654  df-cj 10746  df-re 10747  df-im 10748  df-rsqrt 10902  df-abs 10903  df-clim 11180  df-proddc 11452
This theorem is referenced by:  fprodcl2lem  11506  fprodconst  11521  fprodap0  11522  fprodrec  11530  fprodmodd  11542
  Copyright terms: Public domain W3C validator