Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fprodunsn | Unicode version |
Description: Multiply in an additional term in a finite product. See also fprodsplitsn 11534 which is the same but with a hypothesis in place of the distinct variable condition between and . (Contributed by Jim Kingdon, 16-Aug-2024.) |
Ref | Expression |
---|---|
fprodunsn.f | |
fprodunsn.a | |
fprodunsn.b | |
fprodunsn.ba | |
fprodunsn.ccl | |
fprodunsn.dcl | |
fprodunsn.d |
Ref | Expression |
---|---|
fprodunsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodunsn.ba | . . . 4 | |
2 | disjsn 3622 | . . . 4 | |
3 | 1, 2 | sylibr 133 | . . 3 |
4 | eqidd 2158 | . . 3 | |
5 | fprodunsn.a | . . . 4 | |
6 | fprodunsn.b | . . . 4 | |
7 | unsnfi 6864 | . . . 4 | |
8 | 5, 6, 1, 7 | syl3anc 1220 | . . 3 |
9 | simpr 109 | . . . . . . 7 | |
10 | 9 | orcd 723 | . . . . . 6 |
11 | df-dc 821 | . . . . . 6 DECID | |
12 | 10, 11 | sylibr 133 | . . . . 5 DECID |
13 | simpr 109 | . . . . . . . . 9 | |
14 | velsn 3577 | . . . . . . . . 9 | |
15 | 13, 14 | sylib 121 | . . . . . . . 8 |
16 | 1 | ad2antrr 480 | . . . . . . . 8 |
17 | 15, 16 | eqneltrd 2253 | . . . . . . 7 |
18 | 17 | olcd 724 | . . . . . 6 |
19 | 18, 11 | sylibr 133 | . . . . 5 DECID |
20 | elun 3248 | . . . . . . 7 | |
21 | 20 | biimpi 119 | . . . . . 6 |
22 | 21 | adantl 275 | . . . . 5 |
23 | 12, 19, 22 | mpjaodan 788 | . . . 4 DECID |
24 | 23 | ralrimiva 2530 | . . 3 DECID |
25 | fprodunsn.ccl | . . . . 5 | |
26 | 25 | adantlr 469 | . . . 4 |
27 | elsni 3578 | . . . . . . 7 | |
28 | 27 | adantl 275 | . . . . . 6 |
29 | fprodunsn.d | . . . . . 6 | |
30 | 28, 29 | syl 14 | . . . . 5 |
31 | fprodunsn.dcl | . . . . . 6 | |
32 | 31 | ad2antrr 480 | . . . . 5 |
33 | 30, 32 | eqeltrd 2234 | . . . 4 |
34 | elun 3248 | . . . . . 6 | |
35 | 34 | biimpi 119 | . . . . 5 |
36 | 35 | adantl 275 | . . . 4 |
37 | 26, 33, 36 | mpjaodan 788 | . . 3 |
38 | 3, 4, 8, 24, 37 | fprodsplitdc 11497 | . 2 |
39 | fprodunsn.f | . . . . 5 | |
40 | 39, 29 | prodsnf 11493 | . . . 4 |
41 | 6, 31, 40 | syl2anc 409 | . . 3 |
42 | 41 | oveq2d 5841 | . 2 |
43 | 38, 42 | eqtrd 2190 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 DECID wdc 820 wceq 1335 wcel 2128 wnfc 2286 cun 3100 cin 3101 c0 3394 csn 3560 (class class class)co 5825 cfn 6686 cc 7731 cmul 7738 cprod 11451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4080 ax-sep 4083 ax-nul 4091 ax-pow 4136 ax-pr 4170 ax-un 4394 ax-setind 4497 ax-iinf 4548 ax-cnex 7824 ax-resscn 7825 ax-1cn 7826 ax-1re 7827 ax-icn 7828 ax-addcl 7829 ax-addrcl 7830 ax-mulcl 7831 ax-mulrcl 7832 ax-addcom 7833 ax-mulcom 7834 ax-addass 7835 ax-mulass 7836 ax-distr 7837 ax-i2m1 7838 ax-0lt1 7839 ax-1rid 7840 ax-0id 7841 ax-rnegex 7842 ax-precex 7843 ax-cnre 7844 ax-pre-ltirr 7845 ax-pre-ltwlin 7846 ax-pre-lttrn 7847 ax-pre-apti 7848 ax-pre-ltadd 7849 ax-pre-mulgt0 7850 ax-pre-mulext 7851 ax-arch 7852 ax-caucvg 7853 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3774 df-int 3809 df-iun 3852 df-br 3967 df-opab 4027 df-mpt 4028 df-tr 4064 df-id 4254 df-po 4257 df-iso 4258 df-iord 4327 df-on 4329 df-ilim 4330 df-suc 4332 df-iom 4551 df-xp 4593 df-rel 4594 df-cnv 4595 df-co 4596 df-dm 4597 df-rn 4598 df-res 4599 df-ima 4600 df-iota 5136 df-fun 5173 df-fn 5174 df-f 5175 df-f1 5176 df-fo 5177 df-f1o 5178 df-fv 5179 df-isom 5180 df-riota 5781 df-ov 5828 df-oprab 5829 df-mpo 5830 df-1st 6089 df-2nd 6090 df-recs 6253 df-irdg 6318 df-frec 6339 df-1o 6364 df-oadd 6368 df-er 6481 df-en 6687 df-dom 6688 df-fin 6689 df-pnf 7915 df-mnf 7916 df-xr 7917 df-ltxr 7918 df-le 7919 df-sub 8049 df-neg 8050 df-reap 8451 df-ap 8458 df-div 8547 df-inn 8835 df-2 8893 df-3 8894 df-4 8895 df-n0 9092 df-z 9169 df-uz 9441 df-q 9530 df-rp 9562 df-fz 9914 df-fzo 10046 df-seqfrec 10349 df-exp 10423 df-ihash 10654 df-cj 10746 df-re 10747 df-im 10748 df-rsqrt 10902 df-abs 10903 df-clim 11180 df-proddc 11452 |
This theorem is referenced by: fprodcl2lem 11506 fprodconst 11521 fprodap0 11522 fprodrec 11530 fprodmodd 11542 |
Copyright terms: Public domain | W3C validator |