| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iseqf1olemnab | Unicode version | ||
| Description: Lemma for seq3f1o 10739. (Contributed by Jim Kingdon, 27-Aug-2022.) |
| Ref | Expression |
|---|---|
| iseqf1olemqcl.k |
|
| iseqf1olemqcl.j |
|
| iseqf1olemqcl.a |
|
| iseqf1olemnab.b |
|
| iseqf1olemnab.eq |
|
| iseqf1olemnab.q |
|
| Ref | Expression |
|---|---|
| iseqf1olemnab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseqf1olemnab.eq |
. . . 4
| |
| 2 | 1 | adantr 276 |
. . 3
|
| 3 | iseqf1olemqcl.k |
. . . . . . 7
| |
| 4 | iseqf1olemqcl.j |
. . . . . . 7
| |
| 5 | iseqf1olemqcl.a |
. . . . . . 7
| |
| 6 | iseqf1olemnab.q |
. . . . . . 7
| |
| 7 | 3, 4, 5, 6 | iseqf1olemqval 10722 |
. . . . . 6
|
| 8 | 7 | adantr 276 |
. . . . 5
|
| 9 | simprl 529 |
. . . . . 6
| |
| 10 | 9 | iftrued 3609 |
. . . . 5
|
| 11 | 8, 10 | eqtrd 2262 |
. . . 4
|
| 12 | f1ocnvfv2 5902 |
. . . . . . . 8
| |
| 13 | 4, 3, 12 | syl2anc 411 |
. . . . . . 7
|
| 14 | 13 | ad2antrr 488 |
. . . . . 6
|
| 15 | f1ofn 5573 |
. . . . . . . . 9
| |
| 16 | 4, 15 | syl 14 |
. . . . . . . 8
|
| 17 | 16 | ad2antrr 488 |
. . . . . . 7
|
| 18 | elfzuz 10217 |
. . . . . . . . . 10
| |
| 19 | fzss1 10259 |
. . . . . . . . . 10
| |
| 20 | 3, 18, 19 | 3syl 17 |
. . . . . . . . 9
|
| 21 | f1ocnv 5585 |
. . . . . . . . . . . 12
| |
| 22 | f1of 5572 |
. . . . . . . . . . . 12
| |
| 23 | 4, 21, 22 | 3syl 17 |
. . . . . . . . . . 11
|
| 24 | 23, 3 | ffvelcdmd 5771 |
. . . . . . . . . 10
|
| 25 | elfzuz3 10218 |
. . . . . . . . . 10
| |
| 26 | fzss2 10260 |
. . . . . . . . . 10
| |
| 27 | 24, 25, 26 | 3syl 17 |
. . . . . . . . 9
|
| 28 | 20, 27 | sstrd 3234 |
. . . . . . . 8
|
| 29 | 28 | ad2antrr 488 |
. . . . . . 7
|
| 30 | elfzubelfz 10232 |
. . . . . . . . 9
| |
| 31 | 30 | adantr 276 |
. . . . . . . 8
|
| 32 | 31 | ad2antlr 489 |
. . . . . . 7
|
| 33 | fnfvima 5874 |
. . . . . . 7
| |
| 34 | 17, 29, 32, 33 | syl3anc 1271 |
. . . . . 6
|
| 35 | 14, 34 | eqeltrrd 2307 |
. . . . 5
|
| 36 | 16 | ad2antrr 488 |
. . . . . 6
|
| 37 | 28 | ad2antrr 488 |
. . . . . 6
|
| 38 | 3 | adantr 276 |
. . . . . . . . . 10
|
| 39 | elfzelz 10221 |
. . . . . . . . . 10
| |
| 40 | 38, 39 | syl 14 |
. . . . . . . . 9
|
| 41 | 40 | adantr 276 |
. . . . . . . 8
|
| 42 | 24 | ad2antrr 488 |
. . . . . . . . 9
|
| 43 | elfzelz 10221 |
. . . . . . . . 9
| |
| 44 | 42, 43 | syl 14 |
. . . . . . . 8
|
| 45 | 5 | adantr 276 |
. . . . . . . . . . 11
|
| 46 | elfzelz 10221 |
. . . . . . . . . . 11
| |
| 47 | 45, 46 | syl 14 |
. . . . . . . . . 10
|
| 48 | 47 | adantr 276 |
. . . . . . . . 9
|
| 49 | peano2zm 9484 |
. . . . . . . . 9
| |
| 50 | 48, 49 | syl 14 |
. . . . . . . 8
|
| 51 | 41, 44, 50 | 3jca 1201 |
. . . . . . 7
|
| 52 | simpr 110 |
. . . . . . . . . . 11
| |
| 53 | eqcom 2231 |
. . . . . . . . . . 11
| |
| 54 | 52, 53 | sylnib 680 |
. . . . . . . . . 10
|
| 55 | 9 | adantr 276 |
. . . . . . . . . . . 12
|
| 56 | elfzle1 10223 |
. . . . . . . . . . . 12
| |
| 57 | 55, 56 | syl 14 |
. . . . . . . . . . 11
|
| 58 | zleloe 9493 |
. . . . . . . . . . . 12
| |
| 59 | 41, 48, 58 | syl2anc 411 |
. . . . . . . . . . 11
|
| 60 | 57, 59 | mpbid 147 |
. . . . . . . . . 10
|
| 61 | 54, 60 | ecased 1383 |
. . . . . . . . 9
|
| 62 | zltlem1 9504 |
. . . . . . . . . 10
| |
| 63 | 41, 48, 62 | syl2anc 411 |
. . . . . . . . 9
|
| 64 | 61, 63 | mpbid 147 |
. . . . . . . 8
|
| 65 | 50 | zred 9569 |
. . . . . . . . 9
|
| 66 | 48 | zred 9569 |
. . . . . . . . 9
|
| 67 | 44 | zred 9569 |
. . . . . . . . 9
|
| 68 | 66 | lem1d 9080 |
. . . . . . . . 9
|
| 69 | elfzle2 10224 |
. . . . . . . . . 10
| |
| 70 | 55, 69 | syl 14 |
. . . . . . . . 9
|
| 71 | 65, 66, 67, 68, 70 | letrd 8270 |
. . . . . . . 8
|
| 72 | 64, 71 | jca 306 |
. . . . . . 7
|
| 73 | elfz2 10211 |
. . . . . . 7
| |
| 74 | 51, 72, 73 | sylanbrc 417 |
. . . . . 6
|
| 75 | fnfvima 5874 |
. . . . . 6
| |
| 76 | 36, 37, 74, 75 | syl3anc 1271 |
. . . . 5
|
| 77 | zdceq 9522 |
. . . . . 6
| |
| 78 | 47, 40, 77 | syl2anc 411 |
. . . . 5
|
| 79 | 35, 76, 78 | ifcldadc 3632 |
. . . 4
|
| 80 | 11, 79 | eqeltrd 2306 |
. . 3
|
| 81 | 2, 80 | eqeltrrd 2307 |
. 2
|
| 82 | iseqf1olemnab.b |
. . . . . 6
| |
| 83 | 3, 4, 82, 6 | iseqf1olemqval 10722 |
. . . . 5
|
| 84 | 83 | adantr 276 |
. . . 4
|
| 85 | simprr 531 |
. . . . 5
| |
| 86 | 85 | iffalsed 3612 |
. . . 4
|
| 87 | 84, 86 | eqtrd 2262 |
. . 3
|
| 88 | f1of1 5571 |
. . . . . . 7
| |
| 89 | 4, 88 | syl 14 |
. . . . . 6
|
| 90 | f1elima 5897 |
. . . . . 6
| |
| 91 | 89, 82, 28, 90 | syl3anc 1271 |
. . . . 5
|
| 92 | 91 | adantr 276 |
. . . 4
|
| 93 | 85, 92 | mtbird 677 |
. . 3
|
| 94 | 87, 93 | eqneltrd 2325 |
. 2
|
| 95 | 81, 94 | pm2.65da 665 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-uz 9723 df-fz 10205 |
| This theorem is referenced by: iseqf1olemmo 10727 |
| Copyright terms: Public domain | W3C validator |