ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemnab Unicode version

Theorem iseqf1olemnab 10648
Description: Lemma for seq3f1o 10664. (Contributed by Jim Kingdon, 27-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqcl.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemqcl.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemqcl.a  |-  ( ph  ->  A  e.  ( M ... N ) )
iseqf1olemnab.b  |-  ( ph  ->  B  e.  ( M ... N ) )
iseqf1olemnab.eq  |-  ( ph  ->  ( Q `  A
)  =  ( Q `
 B ) )
iseqf1olemnab.q  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
Assertion
Ref Expression
iseqf1olemnab  |-  ( ph  ->  -.  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )
Distinct variable groups:    u, A    u, B    u, J    u, K    u, M    u, N
Allowed substitution hints:    ph( u)    Q( u)

Proof of Theorem iseqf1olemnab
StepHypRef Expression
1 iseqf1olemnab.eq . . . 4  |-  ( ph  ->  ( Q `  A
)  =  ( Q `
 B ) )
21adantr 276 . . 3  |-  ( (
ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  -> 
( Q `  A
)  =  ( Q `
 B ) )
3 iseqf1olemqcl.k . . . . . . 7  |-  ( ph  ->  K  e.  ( M ... N ) )
4 iseqf1olemqcl.j . . . . . . 7  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
5 iseqf1olemqcl.a . . . . . . 7  |-  ( ph  ->  A  e.  ( M ... N ) )
6 iseqf1olemnab.q . . . . . . 7  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
73, 4, 5, 6iseqf1olemqval 10647 . . . . . 6  |-  ( ph  ->  ( Q `  A
)  =  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K , 
( J `  ( A  -  1 ) ) ) ,  ( J `  A ) ) )
87adantr 276 . . . . 5  |-  ( (
ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  -> 
( Q `  A
)  =  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K , 
( J `  ( A  -  1 ) ) ) ,  ( J `  A ) ) )
9 simprl 529 . . . . . 6  |-  ( (
ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  ->  A  e.  ( K ... ( `' J `  K ) ) )
109iftrued 3578 . . . . 5  |-  ( (
ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  ->  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K ,  ( J `  ( A  -  1 ) ) ) ,  ( J `  A
) )  =  if ( A  =  K ,  K ,  ( J `  ( A  -  1 ) ) ) )
118, 10eqtrd 2238 . . . 4  |-  ( (
ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  -> 
( Q `  A
)  =  if ( A  =  K ,  K ,  ( J `  ( A  -  1 ) ) ) )
12 f1ocnvfv2 5849 . . . . . . . 8  |-  ( ( J : ( M ... N ) -1-1-onto-> ( M ... N )  /\  K  e.  ( M ... N ) )  -> 
( J `  ( `' J `  K ) )  =  K )
134, 3, 12syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( J `  ( `' J `  K ) )  =  K )
1413ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  /\  A  =  K )  ->  ( J `  ( `' J `  K )
)  =  K )
15 f1ofn 5525 . . . . . . . . 9  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  J  Fn  ( M ... N ) )
164, 15syl 14 . . . . . . . 8  |-  ( ph  ->  J  Fn  ( M ... N ) )
1716ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  /\  A  =  K )  ->  J  Fn  ( M ... N
) )
18 elfzuz 10145 . . . . . . . . . 10  |-  ( K  e.  ( M ... N )  ->  K  e.  ( ZZ>= `  M )
)
19 fzss1 10187 . . . . . . . . . 10  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K ... ( `' J `  K ) )  C_  ( M ... ( `' J `  K ) ) )
203, 18, 193syl 17 . . . . . . . . 9  |-  ( ph  ->  ( K ... ( `' J `  K ) )  C_  ( M ... ( `' J `  K ) ) )
21 f1ocnv 5537 . . . . . . . . . . . 12  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  `' J : ( M ... N ) -1-1-onto-> ( M ... N
) )
22 f1of 5524 . . . . . . . . . . . 12  |-  ( `' J : ( M ... N ) -1-1-onto-> ( M ... N )  ->  `' J : ( M ... N ) --> ( M ... N ) )
234, 21, 223syl 17 . . . . . . . . . . 11  |-  ( ph  ->  `' J : ( M ... N ) --> ( M ... N ) )
2423, 3ffvelcdmd 5718 . . . . . . . . . 10  |-  ( ph  ->  ( `' J `  K )  e.  ( M ... N ) )
25 elfzuz3 10146 . . . . . . . . . 10  |-  ( ( `' J `  K )  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  ( `' J `  K )
) )
26 fzss2 10188 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  ( `' J `  K ) )  ->  ( M ... ( `' J `  K ) )  C_  ( M ... N ) )
2724, 25, 263syl 17 . . . . . . . . 9  |-  ( ph  ->  ( M ... ( `' J `  K ) )  C_  ( M ... N ) )
2820, 27sstrd 3203 . . . . . . . 8  |-  ( ph  ->  ( K ... ( `' J `  K ) )  C_  ( M ... N ) )
2928ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  /\  A  =  K )  ->  ( K ... ( `' J `  K ) )  C_  ( M ... N ) )
30 elfzubelfz 10160 . . . . . . . . 9  |-  ( A  e.  ( K ... ( `' J `  K ) )  ->  ( `' J `  K )  e.  ( K ... ( `' J `  K ) ) )
3130adantr 276 . . . . . . . 8  |-  ( ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  ( `' J `  K )  e.  ( K ... ( `' J `  K ) ) )
3231ad2antlr 489 . . . . . . 7  |-  ( ( ( ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  /\  A  =  K )  ->  ( `' J `  K )  e.  ( K ... ( `' J `  K ) ) )
33 fnfvima 5821 . . . . . . 7  |-  ( ( J  Fn  ( M ... N )  /\  ( K ... ( `' J `  K ) )  C_  ( M ... N )  /\  ( `' J `  K )  e.  ( K ... ( `' J `  K ) ) )  ->  ( J `  ( `' J `  K )
)  e.  ( J
" ( K ... ( `' J `  K ) ) ) )
3417, 29, 32, 33syl3anc 1250 . . . . . 6  |-  ( ( ( ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  /\  A  =  K )  ->  ( J `  ( `' J `  K )
)  e.  ( J
" ( K ... ( `' J `  K ) ) ) )
3514, 34eqeltrrd 2283 . . . . 5  |-  ( ( ( ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  /\  A  =  K )  ->  K  e.  ( J " ( K ... ( `' J `  K ) ) ) )
3616ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  /\  -.  A  =  K )  ->  J  Fn  ( M ... N
) )
3728ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  /\  -.  A  =  K )  ->  ( K ... ( `' J `  K ) )  C_  ( M ... N ) )
383adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  ->  K  e.  ( M ... N ) )
39 elfzelz 10149 . . . . . . . . . 10  |-  ( K  e.  ( M ... N )  ->  K  e.  ZZ )
4038, 39syl 14 . . . . . . . . 9  |-  ( (
ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  ->  K  e.  ZZ )
4140adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  /\  -.  A  =  K )  ->  K  e.  ZZ )
4224ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  /\  -.  A  =  K )  ->  ( `' J `  K )  e.  ( M ... N ) )
43 elfzelz 10149 . . . . . . . . 9  |-  ( ( `' J `  K )  e.  ( M ... N )  ->  ( `' J `  K )  e.  ZZ )
4442, 43syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  /\  -.  A  =  K )  ->  ( `' J `  K )  e.  ZZ )
455adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  ->  A  e.  ( M ... N ) )
46 elfzelz 10149 . . . . . . . . . . 11  |-  ( A  e.  ( M ... N )  ->  A  e.  ZZ )
4745, 46syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  ->  A  e.  ZZ )
4847adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  /\  -.  A  =  K )  ->  A  e.  ZZ )
49 peano2zm 9412 . . . . . . . . 9  |-  ( A  e.  ZZ  ->  ( A  -  1 )  e.  ZZ )
5048, 49syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  /\  -.  A  =  K )  ->  ( A  -  1 )  e.  ZZ )
5141, 44, 503jca 1180 . . . . . . 7  |-  ( ( ( ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  /\  -.  A  =  K )  ->  ( K  e.  ZZ  /\  ( `' J `  K )  e.  ZZ  /\  ( A  -  1 )  e.  ZZ ) )
52 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  /\  -.  A  =  K )  ->  -.  A  =  K )
53 eqcom 2207 . . . . . . . . . . 11  |-  ( A  =  K  <->  K  =  A )
5452, 53sylnib 678 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  /\  -.  A  =  K )  ->  -.  K  =  A )
559adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  /\  -.  A  =  K )  ->  A  e.  ( K ... ( `' J `  K ) ) )
56 elfzle1 10151 . . . . . . . . . . . 12  |-  ( A  e.  ( K ... ( `' J `  K ) )  ->  K  <_  A )
5755, 56syl 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  /\  -.  A  =  K )  ->  K  <_  A )
58 zleloe 9421 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  A  e.  ZZ )  ->  ( K  <_  A  <->  ( K  <  A  \/  K  =  A )
) )
5941, 48, 58syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  /\  -.  A  =  K )  ->  ( K  <_  A  <->  ( K  <  A  \/  K  =  A ) ) )
6057, 59mpbid 147 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  /\  -.  A  =  K )  ->  ( K  <  A  \/  K  =  A ) )
6154, 60ecased 1362 . . . . . . . . 9  |-  ( ( ( ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  /\  -.  A  =  K )  ->  K  <  A )
62 zltlem1 9432 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  A  e.  ZZ )  ->  ( K  <  A  <->  K  <_  ( A  - 
1 ) ) )
6341, 48, 62syl2anc 411 . . . . . . . . 9  |-  ( ( ( ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  /\  -.  A  =  K )  ->  ( K  <  A  <->  K  <_  ( A  -  1 ) ) )
6461, 63mpbid 147 . . . . . . . 8  |-  ( ( ( ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  /\  -.  A  =  K )  ->  K  <_  ( A  -  1 ) )
6550zred 9497 . . . . . . . . 9  |-  ( ( ( ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  /\  -.  A  =  K )  ->  ( A  -  1 )  e.  RR )
6648zred 9497 . . . . . . . . 9  |-  ( ( ( ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  /\  -.  A  =  K )  ->  A  e.  RR )
6744zred 9497 . . . . . . . . 9  |-  ( ( ( ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  /\  -.  A  =  K )  ->  ( `' J `  K )  e.  RR )
6866lem1d 9008 . . . . . . . . 9  |-  ( ( ( ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  /\  -.  A  =  K )  ->  ( A  -  1 )  <_  A )
69 elfzle2 10152 . . . . . . . . . 10  |-  ( A  e.  ( K ... ( `' J `  K ) )  ->  A  <_  ( `' J `  K ) )
7055, 69syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  /\  -.  A  =  K )  ->  A  <_  ( `' J `  K ) )
7165, 66, 67, 68, 70letrd 8198 . . . . . . . 8  |-  ( ( ( ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  /\  -.  A  =  K )  ->  ( A  -  1 )  <_  ( `' J `  K ) )
7264, 71jca 306 . . . . . . 7  |-  ( ( ( ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  /\  -.  A  =  K )  ->  ( K  <_  ( A  - 
1 )  /\  ( A  -  1 )  <_  ( `' J `  K ) ) )
73 elfz2 10139 . . . . . . 7  |-  ( ( A  -  1 )  e.  ( K ... ( `' J `  K ) )  <->  ( ( K  e.  ZZ  /\  ( `' J `  K )  e.  ZZ  /\  ( A  -  1 )  e.  ZZ )  /\  ( K  <_  ( A  -  1 )  /\  ( A  -  1
)  <_  ( `' J `  K )
) ) )
7451, 72, 73sylanbrc 417 . . . . . 6  |-  ( ( ( ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  /\  -.  A  =  K )  ->  ( A  -  1 )  e.  ( K ... ( `' J `  K ) ) )
75 fnfvima 5821 . . . . . 6  |-  ( ( J  Fn  ( M ... N )  /\  ( K ... ( `' J `  K ) )  C_  ( M ... N )  /\  ( A  -  1 )  e.  ( K ... ( `' J `  K ) ) )  ->  ( J `  ( A  -  1 ) )  e.  ( J "
( K ... ( `' J `  K ) ) ) )
7636, 37, 74, 75syl3anc 1250 . . . . 5  |-  ( ( ( ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  /\  -.  A  =  K )  ->  ( J `  ( A  -  1 ) )  e.  ( J "
( K ... ( `' J `  K ) ) ) )
77 zdceq 9450 . . . . . 6  |-  ( ( A  e.  ZZ  /\  K  e.  ZZ )  -> DECID  A  =  K )
7847, 40, 77syl2anc 411 . . . . 5  |-  ( (
ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  -> DECID  A  =  K )
7935, 76, 78ifcldadc 3600 . . . 4  |-  ( (
ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  ->  if ( A  =  K ,  K ,  ( J `  ( A  -  1 ) ) )  e.  ( J
" ( K ... ( `' J `  K ) ) ) )
8011, 79eqeltrd 2282 . . 3  |-  ( (
ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  -> 
( Q `  A
)  e.  ( J
" ( K ... ( `' J `  K ) ) ) )
812, 80eqeltrrd 2283 . 2  |-  ( (
ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  -> 
( Q `  B
)  e.  ( J
" ( K ... ( `' J `  K ) ) ) )
82 iseqf1olemnab.b . . . . . 6  |-  ( ph  ->  B  e.  ( M ... N ) )
833, 4, 82, 6iseqf1olemqval 10647 . . . . 5  |-  ( ph  ->  ( Q `  B
)  =  if ( B  e.  ( K ... ( `' J `  K ) ) ,  if ( B  =  K ,  K , 
( J `  ( B  -  1 ) ) ) ,  ( J `  B ) ) )
8483adantr 276 . . . 4  |-  ( (
ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  -> 
( Q `  B
)  =  if ( B  e.  ( K ... ( `' J `  K ) ) ,  if ( B  =  K ,  K , 
( J `  ( B  -  1 ) ) ) ,  ( J `  B ) ) )
85 simprr 531 . . . . 5  |-  ( (
ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  ->  -.  B  e.  ( K ... ( `' J `  K ) ) )
8685iffalsed 3581 . . . 4  |-  ( (
ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  ->  if ( B  e.  ( K ... ( `' J `  K ) ) ,  if ( B  =  K ,  K ,  ( J `  ( B  -  1 ) ) ) ,  ( J `  B
) )  =  ( J `  B ) )
8784, 86eqtrd 2238 . . 3  |-  ( (
ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  -> 
( Q `  B
)  =  ( J `
 B ) )
88 f1of1 5523 . . . . . . 7  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  J :
( M ... N
) -1-1-> ( M ... N ) )
894, 88syl 14 . . . . . 6  |-  ( ph  ->  J : ( M ... N ) -1-1-> ( M ... N ) )
90 f1elima 5844 . . . . . 6  |-  ( ( J : ( M ... N ) -1-1-> ( M ... N )  /\  B  e.  ( M ... N )  /\  ( K ... ( `' J `  K ) )  C_  ( M ... N ) )  -> 
( ( J `  B )  e.  ( J " ( K ... ( `' J `  K ) ) )  <-> 
B  e.  ( K ... ( `' J `  K ) ) ) )
9189, 82, 28, 90syl3anc 1250 . . . . 5  |-  ( ph  ->  ( ( J `  B )  e.  ( J " ( K ... ( `' J `  K ) ) )  <-> 
B  e.  ( K ... ( `' J `  K ) ) ) )
9291adantr 276 . . . 4  |-  ( (
ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  -> 
( ( J `  B )  e.  ( J " ( K ... ( `' J `  K ) ) )  <-> 
B  e.  ( K ... ( `' J `  K ) ) ) )
9385, 92mtbird 675 . . 3  |-  ( (
ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  ->  -.  ( J `  B
)  e.  ( J
" ( K ... ( `' J `  K ) ) ) )
9487, 93eqneltrd 2301 . 2  |-  ( (
ph  /\  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )  ->  -.  ( Q `  B
)  e.  ( J
" ( K ... ( `' J `  K ) ) ) )
9581, 94pm2.65da 663 1  |-  ( ph  ->  -.  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    /\ w3a 981    = wceq 1373    e. wcel 2176    C_ wss 3166   ifcif 3571   class class class wbr 4045    |-> cmpt 4106   `'ccnv 4675   "cima 4679    Fn wfn 5267   -->wf 5268   -1-1->wf1 5269   -1-1-onto->wf1o 5271   ` cfv 5272  (class class class)co 5946   1c1 7928    < clt 8109    <_ cle 8110    - cmin 8245   ZZcz 9374   ZZ>=cuz 9650   ...cfz 10132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-inn 9039  df-n0 9298  df-z 9375  df-uz 9651  df-fz 10133
This theorem is referenced by:  iseqf1olemmo  10652
  Copyright terms: Public domain W3C validator