| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iseqf1olemnab | Unicode version | ||
| Description: Lemma for seq3f1o 10626. (Contributed by Jim Kingdon, 27-Aug-2022.) |
| Ref | Expression |
|---|---|
| iseqf1olemqcl.k |
|
| iseqf1olemqcl.j |
|
| iseqf1olemqcl.a |
|
| iseqf1olemnab.b |
|
| iseqf1olemnab.eq |
|
| iseqf1olemnab.q |
|
| Ref | Expression |
|---|---|
| iseqf1olemnab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseqf1olemnab.eq |
. . . 4
| |
| 2 | 1 | adantr 276 |
. . 3
|
| 3 | iseqf1olemqcl.k |
. . . . . . 7
| |
| 4 | iseqf1olemqcl.j |
. . . . . . 7
| |
| 5 | iseqf1olemqcl.a |
. . . . . . 7
| |
| 6 | iseqf1olemnab.q |
. . . . . . 7
| |
| 7 | 3, 4, 5, 6 | iseqf1olemqval 10609 |
. . . . . 6
|
| 8 | 7 | adantr 276 |
. . . . 5
|
| 9 | simprl 529 |
. . . . . 6
| |
| 10 | 9 | iftrued 3569 |
. . . . 5
|
| 11 | 8, 10 | eqtrd 2229 |
. . . 4
|
| 12 | f1ocnvfv2 5828 |
. . . . . . . 8
| |
| 13 | 4, 3, 12 | syl2anc 411 |
. . . . . . 7
|
| 14 | 13 | ad2antrr 488 |
. . . . . 6
|
| 15 | f1ofn 5508 |
. . . . . . . . 9
| |
| 16 | 4, 15 | syl 14 |
. . . . . . . 8
|
| 17 | 16 | ad2antrr 488 |
. . . . . . 7
|
| 18 | elfzuz 10113 |
. . . . . . . . . 10
| |
| 19 | fzss1 10155 |
. . . . . . . . . 10
| |
| 20 | 3, 18, 19 | 3syl 17 |
. . . . . . . . 9
|
| 21 | f1ocnv 5520 |
. . . . . . . . . . . 12
| |
| 22 | f1of 5507 |
. . . . . . . . . . . 12
| |
| 23 | 4, 21, 22 | 3syl 17 |
. . . . . . . . . . 11
|
| 24 | 23, 3 | ffvelcdmd 5701 |
. . . . . . . . . 10
|
| 25 | elfzuz3 10114 |
. . . . . . . . . 10
| |
| 26 | fzss2 10156 |
. . . . . . . . . 10
| |
| 27 | 24, 25, 26 | 3syl 17 |
. . . . . . . . 9
|
| 28 | 20, 27 | sstrd 3194 |
. . . . . . . 8
|
| 29 | 28 | ad2antrr 488 |
. . . . . . 7
|
| 30 | elfzubelfz 10128 |
. . . . . . . . 9
| |
| 31 | 30 | adantr 276 |
. . . . . . . 8
|
| 32 | 31 | ad2antlr 489 |
. . . . . . 7
|
| 33 | fnfvima 5800 |
. . . . . . 7
| |
| 34 | 17, 29, 32, 33 | syl3anc 1249 |
. . . . . 6
|
| 35 | 14, 34 | eqeltrrd 2274 |
. . . . 5
|
| 36 | 16 | ad2antrr 488 |
. . . . . 6
|
| 37 | 28 | ad2antrr 488 |
. . . . . 6
|
| 38 | 3 | adantr 276 |
. . . . . . . . . 10
|
| 39 | elfzelz 10117 |
. . . . . . . . . 10
| |
| 40 | 38, 39 | syl 14 |
. . . . . . . . 9
|
| 41 | 40 | adantr 276 |
. . . . . . . 8
|
| 42 | 24 | ad2antrr 488 |
. . . . . . . . 9
|
| 43 | elfzelz 10117 |
. . . . . . . . 9
| |
| 44 | 42, 43 | syl 14 |
. . . . . . . 8
|
| 45 | 5 | adantr 276 |
. . . . . . . . . . 11
|
| 46 | elfzelz 10117 |
. . . . . . . . . . 11
| |
| 47 | 45, 46 | syl 14 |
. . . . . . . . . 10
|
| 48 | 47 | adantr 276 |
. . . . . . . . 9
|
| 49 | peano2zm 9381 |
. . . . . . . . 9
| |
| 50 | 48, 49 | syl 14 |
. . . . . . . 8
|
| 51 | 41, 44, 50 | 3jca 1179 |
. . . . . . 7
|
| 52 | simpr 110 |
. . . . . . . . . . 11
| |
| 53 | eqcom 2198 |
. . . . . . . . . . 11
| |
| 54 | 52, 53 | sylnib 677 |
. . . . . . . . . 10
|
| 55 | 9 | adantr 276 |
. . . . . . . . . . . 12
|
| 56 | elfzle1 10119 |
. . . . . . . . . . . 12
| |
| 57 | 55, 56 | syl 14 |
. . . . . . . . . . 11
|
| 58 | zleloe 9390 |
. . . . . . . . . . . 12
| |
| 59 | 41, 48, 58 | syl2anc 411 |
. . . . . . . . . . 11
|
| 60 | 57, 59 | mpbid 147 |
. . . . . . . . . 10
|
| 61 | 54, 60 | ecased 1360 |
. . . . . . . . 9
|
| 62 | zltlem1 9400 |
. . . . . . . . . 10
| |
| 63 | 41, 48, 62 | syl2anc 411 |
. . . . . . . . 9
|
| 64 | 61, 63 | mpbid 147 |
. . . . . . . 8
|
| 65 | 50 | zred 9465 |
. . . . . . . . 9
|
| 66 | 48 | zred 9465 |
. . . . . . . . 9
|
| 67 | 44 | zred 9465 |
. . . . . . . . 9
|
| 68 | 66 | lem1d 8977 |
. . . . . . . . 9
|
| 69 | elfzle2 10120 |
. . . . . . . . . 10
| |
| 70 | 55, 69 | syl 14 |
. . . . . . . . 9
|
| 71 | 65, 66, 67, 68, 70 | letrd 8167 |
. . . . . . . 8
|
| 72 | 64, 71 | jca 306 |
. . . . . . 7
|
| 73 | elfz2 10107 |
. . . . . . 7
| |
| 74 | 51, 72, 73 | sylanbrc 417 |
. . . . . 6
|
| 75 | fnfvima 5800 |
. . . . . 6
| |
| 76 | 36, 37, 74, 75 | syl3anc 1249 |
. . . . 5
|
| 77 | zdceq 9418 |
. . . . . 6
| |
| 78 | 47, 40, 77 | syl2anc 411 |
. . . . 5
|
| 79 | 35, 76, 78 | ifcldadc 3591 |
. . . 4
|
| 80 | 11, 79 | eqeltrd 2273 |
. . 3
|
| 81 | 2, 80 | eqeltrrd 2274 |
. 2
|
| 82 | iseqf1olemnab.b |
. . . . . 6
| |
| 83 | 3, 4, 82, 6 | iseqf1olemqval 10609 |
. . . . 5
|
| 84 | 83 | adantr 276 |
. . . 4
|
| 85 | simprr 531 |
. . . . 5
| |
| 86 | 85 | iffalsed 3572 |
. . . 4
|
| 87 | 84, 86 | eqtrd 2229 |
. . 3
|
| 88 | f1of1 5506 |
. . . . . . 7
| |
| 89 | 4, 88 | syl 14 |
. . . . . 6
|
| 90 | f1elima 5823 |
. . . . . 6
| |
| 91 | 89, 82, 28, 90 | syl3anc 1249 |
. . . . 5
|
| 92 | 91 | adantr 276 |
. . . 4
|
| 93 | 85, 92 | mtbird 674 |
. . 3
|
| 94 | 87, 93 | eqneltrd 2292 |
. 2
|
| 95 | 81, 94 | pm2.65da 662 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 df-uz 9619 df-fz 10101 |
| This theorem is referenced by: iseqf1olemmo 10614 |
| Copyright terms: Public domain | W3C validator |