Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iseqf1olemnab | Unicode version |
Description: Lemma for seq3f1o 10460. (Contributed by Jim Kingdon, 27-Aug-2022.) |
Ref | Expression |
---|---|
iseqf1olemqcl.k | |
iseqf1olemqcl.j | |
iseqf1olemqcl.a | |
iseqf1olemnab.b | |
iseqf1olemnab.eq | |
iseqf1olemnab.q |
Ref | Expression |
---|---|
iseqf1olemnab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseqf1olemnab.eq | . . . 4 | |
2 | 1 | adantr 274 | . . 3 |
3 | iseqf1olemqcl.k | . . . . . . 7 | |
4 | iseqf1olemqcl.j | . . . . . . 7 | |
5 | iseqf1olemqcl.a | . . . . . . 7 | |
6 | iseqf1olemnab.q | . . . . . . 7 | |
7 | 3, 4, 5, 6 | iseqf1olemqval 10443 | . . . . . 6 |
8 | 7 | adantr 274 | . . . . 5 |
9 | simprl 526 | . . . . . 6 | |
10 | 9 | iftrued 3533 | . . . . 5 |
11 | 8, 10 | eqtrd 2203 | . . . 4 |
12 | f1ocnvfv2 5757 | . . . . . . . 8 | |
13 | 4, 3, 12 | syl2anc 409 | . . . . . . 7 |
14 | 13 | ad2antrr 485 | . . . . . 6 |
15 | f1ofn 5443 | . . . . . . . . 9 | |
16 | 4, 15 | syl 14 | . . . . . . . 8 |
17 | 16 | ad2antrr 485 | . . . . . . 7 |
18 | elfzuz 9977 | . . . . . . . . . 10 | |
19 | fzss1 10019 | . . . . . . . . . 10 | |
20 | 3, 18, 19 | 3syl 17 | . . . . . . . . 9 |
21 | f1ocnv 5455 | . . . . . . . . . . . 12 | |
22 | f1of 5442 | . . . . . . . . . . . 12 | |
23 | 4, 21, 22 | 3syl 17 | . . . . . . . . . . 11 |
24 | 23, 3 | ffvelrnd 5632 | . . . . . . . . . 10 |
25 | elfzuz3 9978 | . . . . . . . . . 10 | |
26 | fzss2 10020 | . . . . . . . . . 10 | |
27 | 24, 25, 26 | 3syl 17 | . . . . . . . . 9 |
28 | 20, 27 | sstrd 3157 | . . . . . . . 8 |
29 | 28 | ad2antrr 485 | . . . . . . 7 |
30 | elfzubelfz 9992 | . . . . . . . . 9 | |
31 | 30 | adantr 274 | . . . . . . . 8 |
32 | 31 | ad2antlr 486 | . . . . . . 7 |
33 | fnfvima 5730 | . . . . . . 7 | |
34 | 17, 29, 32, 33 | syl3anc 1233 | . . . . . 6 |
35 | 14, 34 | eqeltrrd 2248 | . . . . 5 |
36 | 16 | ad2antrr 485 | . . . . . 6 |
37 | 28 | ad2antrr 485 | . . . . . 6 |
38 | 3 | adantr 274 | . . . . . . . . . 10 |
39 | elfzelz 9981 | . . . . . . . . . 10 | |
40 | 38, 39 | syl 14 | . . . . . . . . 9 |
41 | 40 | adantr 274 | . . . . . . . 8 |
42 | 24 | ad2antrr 485 | . . . . . . . . 9 |
43 | elfzelz 9981 | . . . . . . . . 9 | |
44 | 42, 43 | syl 14 | . . . . . . . 8 |
45 | 5 | adantr 274 | . . . . . . . . . . 11 |
46 | elfzelz 9981 | . . . . . . . . . . 11 | |
47 | 45, 46 | syl 14 | . . . . . . . . . 10 |
48 | 47 | adantr 274 | . . . . . . . . 9 |
49 | peano2zm 9250 | . . . . . . . . 9 | |
50 | 48, 49 | syl 14 | . . . . . . . 8 |
51 | 41, 44, 50 | 3jca 1172 | . . . . . . 7 |
52 | simpr 109 | . . . . . . . . . . 11 | |
53 | eqcom 2172 | . . . . . . . . . . 11 | |
54 | 52, 53 | sylnib 671 | . . . . . . . . . 10 |
55 | 9 | adantr 274 | . . . . . . . . . . . 12 |
56 | elfzle1 9983 | . . . . . . . . . . . 12 | |
57 | 55, 56 | syl 14 | . . . . . . . . . . 11 |
58 | zleloe 9259 | . . . . . . . . . . . 12 | |
59 | 41, 48, 58 | syl2anc 409 | . . . . . . . . . . 11 |
60 | 57, 59 | mpbid 146 | . . . . . . . . . 10 |
61 | 54, 60 | ecased 1344 | . . . . . . . . 9 |
62 | zltlem1 9269 | . . . . . . . . . 10 | |
63 | 41, 48, 62 | syl2anc 409 | . . . . . . . . 9 |
64 | 61, 63 | mpbid 146 | . . . . . . . 8 |
65 | 50 | zred 9334 | . . . . . . . . 9 |
66 | 48 | zred 9334 | . . . . . . . . 9 |
67 | 44 | zred 9334 | . . . . . . . . 9 |
68 | 66 | lem1d 8849 | . . . . . . . . 9 |
69 | elfzle2 9984 | . . . . . . . . . 10 | |
70 | 55, 69 | syl 14 | . . . . . . . . 9 |
71 | 65, 66, 67, 68, 70 | letrd 8043 | . . . . . . . 8 |
72 | 64, 71 | jca 304 | . . . . . . 7 |
73 | elfz2 9972 | . . . . . . 7 | |
74 | 51, 72, 73 | sylanbrc 415 | . . . . . 6 |
75 | fnfvima 5730 | . . . . . 6 | |
76 | 36, 37, 74, 75 | syl3anc 1233 | . . . . 5 |
77 | zdceq 9287 | . . . . . 6 DECID | |
78 | 47, 40, 77 | syl2anc 409 | . . . . 5 DECID |
79 | 35, 76, 78 | ifcldadc 3555 | . . . 4 |
80 | 11, 79 | eqeltrd 2247 | . . 3 |
81 | 2, 80 | eqeltrrd 2248 | . 2 |
82 | iseqf1olemnab.b | . . . . . 6 | |
83 | 3, 4, 82, 6 | iseqf1olemqval 10443 | . . . . 5 |
84 | 83 | adantr 274 | . . . 4 |
85 | simprr 527 | . . . . 5 | |
86 | 85 | iffalsed 3536 | . . . 4 |
87 | 84, 86 | eqtrd 2203 | . . 3 |
88 | f1of1 5441 | . . . . . . 7 | |
89 | 4, 88 | syl 14 | . . . . . 6 |
90 | f1elima 5752 | . . . . . 6 | |
91 | 89, 82, 28, 90 | syl3anc 1233 | . . . . 5 |
92 | 91 | adantr 274 | . . . 4 |
93 | 85, 92 | mtbird 668 | . . 3 |
94 | 87, 93 | eqneltrd 2266 | . 2 |
95 | 81, 94 | pm2.65da 656 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 DECID wdc 829 w3a 973 wceq 1348 wcel 2141 wss 3121 cif 3526 class class class wbr 3989 cmpt 4050 ccnv 4610 cima 4614 wfn 5193 wf 5194 wf1 5195 wf1o 5197 cfv 5198 (class class class)co 5853 c1 7775 clt 7954 cle 7955 cmin 8090 cz 9212 cuz 9487 cfz 9965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 |
This theorem is referenced by: iseqf1olemmo 10448 |
Copyright terms: Public domain | W3C validator |