| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iseqf1olemnab | Unicode version | ||
| Description: Lemma for seq3f1o 10664. (Contributed by Jim Kingdon, 27-Aug-2022.) |
| Ref | Expression |
|---|---|
| iseqf1olemqcl.k |
|
| iseqf1olemqcl.j |
|
| iseqf1olemqcl.a |
|
| iseqf1olemnab.b |
|
| iseqf1olemnab.eq |
|
| iseqf1olemnab.q |
|
| Ref | Expression |
|---|---|
| iseqf1olemnab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseqf1olemnab.eq |
. . . 4
| |
| 2 | 1 | adantr 276 |
. . 3
|
| 3 | iseqf1olemqcl.k |
. . . . . . 7
| |
| 4 | iseqf1olemqcl.j |
. . . . . . 7
| |
| 5 | iseqf1olemqcl.a |
. . . . . . 7
| |
| 6 | iseqf1olemnab.q |
. . . . . . 7
| |
| 7 | 3, 4, 5, 6 | iseqf1olemqval 10647 |
. . . . . 6
|
| 8 | 7 | adantr 276 |
. . . . 5
|
| 9 | simprl 529 |
. . . . . 6
| |
| 10 | 9 | iftrued 3578 |
. . . . 5
|
| 11 | 8, 10 | eqtrd 2238 |
. . . 4
|
| 12 | f1ocnvfv2 5849 |
. . . . . . . 8
| |
| 13 | 4, 3, 12 | syl2anc 411 |
. . . . . . 7
|
| 14 | 13 | ad2antrr 488 |
. . . . . 6
|
| 15 | f1ofn 5525 |
. . . . . . . . 9
| |
| 16 | 4, 15 | syl 14 |
. . . . . . . 8
|
| 17 | 16 | ad2antrr 488 |
. . . . . . 7
|
| 18 | elfzuz 10145 |
. . . . . . . . . 10
| |
| 19 | fzss1 10187 |
. . . . . . . . . 10
| |
| 20 | 3, 18, 19 | 3syl 17 |
. . . . . . . . 9
|
| 21 | f1ocnv 5537 |
. . . . . . . . . . . 12
| |
| 22 | f1of 5524 |
. . . . . . . . . . . 12
| |
| 23 | 4, 21, 22 | 3syl 17 |
. . . . . . . . . . 11
|
| 24 | 23, 3 | ffvelcdmd 5718 |
. . . . . . . . . 10
|
| 25 | elfzuz3 10146 |
. . . . . . . . . 10
| |
| 26 | fzss2 10188 |
. . . . . . . . . 10
| |
| 27 | 24, 25, 26 | 3syl 17 |
. . . . . . . . 9
|
| 28 | 20, 27 | sstrd 3203 |
. . . . . . . 8
|
| 29 | 28 | ad2antrr 488 |
. . . . . . 7
|
| 30 | elfzubelfz 10160 |
. . . . . . . . 9
| |
| 31 | 30 | adantr 276 |
. . . . . . . 8
|
| 32 | 31 | ad2antlr 489 |
. . . . . . 7
|
| 33 | fnfvima 5821 |
. . . . . . 7
| |
| 34 | 17, 29, 32, 33 | syl3anc 1250 |
. . . . . 6
|
| 35 | 14, 34 | eqeltrrd 2283 |
. . . . 5
|
| 36 | 16 | ad2antrr 488 |
. . . . . 6
|
| 37 | 28 | ad2antrr 488 |
. . . . . 6
|
| 38 | 3 | adantr 276 |
. . . . . . . . . 10
|
| 39 | elfzelz 10149 |
. . . . . . . . . 10
| |
| 40 | 38, 39 | syl 14 |
. . . . . . . . 9
|
| 41 | 40 | adantr 276 |
. . . . . . . 8
|
| 42 | 24 | ad2antrr 488 |
. . . . . . . . 9
|
| 43 | elfzelz 10149 |
. . . . . . . . 9
| |
| 44 | 42, 43 | syl 14 |
. . . . . . . 8
|
| 45 | 5 | adantr 276 |
. . . . . . . . . . 11
|
| 46 | elfzelz 10149 |
. . . . . . . . . . 11
| |
| 47 | 45, 46 | syl 14 |
. . . . . . . . . 10
|
| 48 | 47 | adantr 276 |
. . . . . . . . 9
|
| 49 | peano2zm 9412 |
. . . . . . . . 9
| |
| 50 | 48, 49 | syl 14 |
. . . . . . . 8
|
| 51 | 41, 44, 50 | 3jca 1180 |
. . . . . . 7
|
| 52 | simpr 110 |
. . . . . . . . . . 11
| |
| 53 | eqcom 2207 |
. . . . . . . . . . 11
| |
| 54 | 52, 53 | sylnib 678 |
. . . . . . . . . 10
|
| 55 | 9 | adantr 276 |
. . . . . . . . . . . 12
|
| 56 | elfzle1 10151 |
. . . . . . . . . . . 12
| |
| 57 | 55, 56 | syl 14 |
. . . . . . . . . . 11
|
| 58 | zleloe 9421 |
. . . . . . . . . . . 12
| |
| 59 | 41, 48, 58 | syl2anc 411 |
. . . . . . . . . . 11
|
| 60 | 57, 59 | mpbid 147 |
. . . . . . . . . 10
|
| 61 | 54, 60 | ecased 1362 |
. . . . . . . . 9
|
| 62 | zltlem1 9432 |
. . . . . . . . . 10
| |
| 63 | 41, 48, 62 | syl2anc 411 |
. . . . . . . . 9
|
| 64 | 61, 63 | mpbid 147 |
. . . . . . . 8
|
| 65 | 50 | zred 9497 |
. . . . . . . . 9
|
| 66 | 48 | zred 9497 |
. . . . . . . . 9
|
| 67 | 44 | zred 9497 |
. . . . . . . . 9
|
| 68 | 66 | lem1d 9008 |
. . . . . . . . 9
|
| 69 | elfzle2 10152 |
. . . . . . . . . 10
| |
| 70 | 55, 69 | syl 14 |
. . . . . . . . 9
|
| 71 | 65, 66, 67, 68, 70 | letrd 8198 |
. . . . . . . 8
|
| 72 | 64, 71 | jca 306 |
. . . . . . 7
|
| 73 | elfz2 10139 |
. . . . . . 7
| |
| 74 | 51, 72, 73 | sylanbrc 417 |
. . . . . 6
|
| 75 | fnfvima 5821 |
. . . . . 6
| |
| 76 | 36, 37, 74, 75 | syl3anc 1250 |
. . . . 5
|
| 77 | zdceq 9450 |
. . . . . 6
| |
| 78 | 47, 40, 77 | syl2anc 411 |
. . . . 5
|
| 79 | 35, 76, 78 | ifcldadc 3600 |
. . . 4
|
| 80 | 11, 79 | eqeltrd 2282 |
. . 3
|
| 81 | 2, 80 | eqeltrrd 2283 |
. 2
|
| 82 | iseqf1olemnab.b |
. . . . . 6
| |
| 83 | 3, 4, 82, 6 | iseqf1olemqval 10647 |
. . . . 5
|
| 84 | 83 | adantr 276 |
. . . 4
|
| 85 | simprr 531 |
. . . . 5
| |
| 86 | 85 | iffalsed 3581 |
. . . 4
|
| 87 | 84, 86 | eqtrd 2238 |
. . 3
|
| 88 | f1of1 5523 |
. . . . . . 7
| |
| 89 | 4, 88 | syl 14 |
. . . . . 6
|
| 90 | f1elima 5844 |
. . . . . 6
| |
| 91 | 89, 82, 28, 90 | syl3anc 1250 |
. . . . 5
|
| 92 | 91 | adantr 276 |
. . . 4
|
| 93 | 85, 92 | mtbird 675 |
. . 3
|
| 94 | 87, 93 | eqneltrd 2301 |
. 2
|
| 95 | 81, 94 | pm2.65da 663 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-inn 9039 df-n0 9298 df-z 9375 df-uz 9651 df-fz 10133 |
| This theorem is referenced by: iseqf1olemmo 10652 |
| Copyright terms: Public domain | W3C validator |