ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctinfomlemom Unicode version

Theorem ctinfomlemom 12382
Description: Lemma for ctinfom 12383. Converting between  om and  NN0. (Contributed by Jim Kingdon, 10-Aug-2023.)
Hypotheses
Ref Expression
ctinfom.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ctinfom.g  |-  G  =  ( F  o.  `' N )
ctinfom.f  |-  ( ph  ->  F : om -onto-> A
)
ctinfom.inf  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  -.  ( F `  k )  e.  ( F "
n ) )
Assertion
Ref Expression
ctinfomlemom  |-  ( ph  ->  ( G : NN0 -onto-> A  /\  A. m  e. 
NN0  E. j  e.  NN0  A. i  e.  ( 0 ... m ) ( G `  j )  =/=  ( G `  i ) ) )
Distinct variable groups:    i, F, x   
n, F    j, G, k    i, N, j, k   
n, N, k    x, N, k    i, m, j, k    ph, i, k, m, x    m, n
Allowed substitution hints:    ph( j, n)    A( x, i, j, k, m, n)    F( j, k, m)    G( x, i, m, n)    N( m)

Proof of Theorem ctinfomlemom
StepHypRef Expression
1 ctinfom.f . . . 4  |-  ( ph  ->  F : om -onto-> A
)
2 ctinfom.n . . . . . . 7  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
32frechashgf1o 10384 . . . . . 6  |-  N : om
-1-1-onto-> NN0
4 f1ocnv 5455 . . . . . 6  |-  ( N : om -1-1-onto-> NN0  ->  `' N : NN0
-1-1-onto-> om )
53, 4ax-mp 5 . . . . 5  |-  `' N : NN0
-1-1-onto-> om
6 f1ofo 5449 . . . . 5  |-  ( `' N : NN0 -1-1-onto-> om  ->  `' N : NN0 -onto-> om )
75, 6ax-mp 5 . . . 4  |-  `' N : NN0 -onto-> om
8 foco 5430 . . . 4  |-  ( ( F : om -onto-> A  /\  `' N : NN0 -onto-> om )  ->  ( F  o.  `' N ) : NN0 -onto-> A )
91, 7, 8sylancl 411 . . 3  |-  ( ph  ->  ( F  o.  `' N ) : NN0 -onto-> A )
10 ctinfom.g . . . 4  |-  G  =  ( F  o.  `' N )
11 foeq1 5416 . . . 4  |-  ( G  =  ( F  o.  `' N )  ->  ( G : NN0 -onto-> A  <->  ( F  o.  `' N ) : NN0 -onto-> A ) )
1210, 11ax-mp 5 . . 3  |-  ( G : NN0 -onto-> A  <->  ( F  o.  `' N ) : NN0 -onto-> A )
139, 12sylibr 133 . 2  |-  ( ph  ->  G : NN0 -onto-> A
)
14 imaeq2 4949 . . . . . . . 8  |-  ( n  =  suc  ( `' N `  m )  ->  ( F "
n )  =  ( F " suc  ( `' N `  m ) ) )
1514eleq2d 2240 . . . . . . 7  |-  ( n  =  suc  ( `' N `  m )  ->  ( ( F `
 k )  e.  ( F " n
)  <->  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )
1615notbid 662 . . . . . 6  |-  ( n  =  suc  ( `' N `  m )  ->  ( -.  ( F `  k )  e.  ( F " n
)  <->  -.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )
1716rexbidv 2471 . . . . 5  |-  ( n  =  suc  ( `' N `  m )  ->  ( E. k  e.  om  -.  ( F `
 k )  e.  ( F " n
)  <->  E. k  e.  om  -.  ( F `  k
)  e.  ( F
" suc  ( `' N `  m )
) ) )
18 ctinfom.inf . . . . . 6  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  -.  ( F `  k )  e.  ( F "
n ) )
1918adantr 274 . . . . 5  |-  ( (
ph  /\  m  e.  NN0 )  ->  A. n  e.  om  E. k  e. 
om  -.  ( F `  k )  e.  ( F " n ) )
20 f1of 5442 . . . . . . . . 9  |-  ( `' N : NN0 -1-1-onto-> om  ->  `' N : NN0 --> om )
215, 20ax-mp 5 . . . . . . . 8  |-  `' N : NN0 --> om
2221a1i 9 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN0 )  ->  `' N : NN0 --> om )
23 simpr 109 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN0 )  ->  m  e.  NN0 )
2422, 23ffvelrnd 5632 . . . . . 6  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( `' N `  m )  e.  om )
25 peano2 4579 . . . . . 6  |-  ( ( `' N `  m )  e.  om  ->  suc  ( `' N `  m )  e.  om )
2624, 25syl 14 . . . . 5  |-  ( (
ph  /\  m  e.  NN0 )  ->  suc  ( `' N `  m )  e.  om )
2717, 19, 26rspcdva 2839 . . . 4  |-  ( (
ph  /\  m  e.  NN0 )  ->  E. k  e.  om  -.  ( F `
 k )  e.  ( F " suc  ( `' N `  m ) ) )
28 f1of 5442 . . . . . . . 8  |-  ( N : om -1-1-onto-> NN0  ->  N : om
--> NN0 )
293, 28ax-mp 5 . . . . . . 7  |-  N : om
--> NN0
3029a1i 9 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
k  e.  om  /\  -.  ( F `  k
)  e.  ( F
" suc  ( `' N `  m )
) ) )  ->  N : om --> NN0 )
31 simprl 526 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
k  e.  om  /\  -.  ( F `  k
)  e.  ( F
" suc  ( `' N `  m )
) ) )  -> 
k  e.  om )
3230, 31ffvelrnd 5632 . . . . 5  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
k  e.  om  /\  -.  ( F `  k
)  e.  ( F
" suc  ( `' N `  m )
) ) )  -> 
( N `  k
)  e.  NN0 )
3310fveq1i 5497 . . . . . . . . . . 11  |-  ( G `
 ( N `  k ) )  =  ( ( F  o.  `' N ) `  ( N `  k )
)
3432adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( N `  k )  e.  NN0 )
35 fvco3 5567 . . . . . . . . . . . 12  |-  ( ( `' N : NN0 --> om  /\  ( N `  k )  e.  NN0 )  -> 
( ( F  o.  `' N ) `  ( N `  k )
)  =  ( F `
 ( `' N `  ( N `  k
) ) ) )
3621, 34, 35sylancr 412 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( ( F  o.  `' N ) `
 ( N `  k ) )  =  ( F `  ( `' N `  ( N `
 k ) ) ) )
3733, 36eqtrid 2215 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( G `  ( N `  k ) )  =  ( F `
 ( `' N `  ( N `  k
) ) ) )
3831adantr 274 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  k  e.  om )
39 f1ocnvfv1 5756 . . . . . . . . . . . . 13  |-  ( ( N : om -1-1-onto-> NN0  /\  k  e. 
om )  ->  ( `' N `  ( N `
 k ) )  =  k )
403, 39mpan 422 . . . . . . . . . . . 12  |-  ( k  e.  om  ->  ( `' N `  ( N `
 k ) )  =  k )
4140fveq2d 5500 . . . . . . . . . . 11  |-  ( k  e.  om  ->  ( F `  ( `' N `  ( N `  k ) ) )  =  ( F `  k ) )
4238, 41syl 14 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( F `  ( `' N `  ( N `
 k ) ) )  =  ( F `
 k ) )
4337, 42eqtrd 2203 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( G `  ( N `  k ) )  =  ( F `
 k ) )
44 simplrr 531 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  -.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) )
4543, 44eqneltrd 2266 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  -.  ( G `  ( N `  k
) )  e.  ( F " suc  ( `' N `  m ) ) )
46 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  /\  ( G `  ( N `  k ) )  =  ( G `
 i ) )  ->  ( G `  ( N `  k ) )  =  ( G `
 i ) )
4710fveq1i 5497 . . . . . . . . . . . 12  |-  ( G `
 i )  =  ( ( F  o.  `' N ) `  i
)
48 elfznn0 10070 . . . . . . . . . . . . . 14  |-  ( i  e.  ( 0 ... m )  ->  i  e.  NN0 )
4948adantl 275 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  i  e.  NN0 )
50 fvco3 5567 . . . . . . . . . . . . 13  |-  ( ( `' N : NN0 --> om  /\  i  e.  NN0 )  -> 
( ( F  o.  `' N ) `  i
)  =  ( F `
 ( `' N `  i ) ) )
5121, 49, 50sylancr 412 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( ( F  o.  `' N ) `
 i )  =  ( F `  ( `' N `  i ) ) )
5247, 51eqtrid 2215 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( G `  i )  =  ( F `  ( `' N `  i ) ) )
53 elfzle2 9984 . . . . . . . . . . . . . . 15  |-  ( i  e.  ( 0 ... m )  ->  i  <_  m )
5453adantl 275 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  i  <_  m
)
55 0zd 9224 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  0  e.  ZZ )
5621a1i 9 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  `' N : NN0
--> om )
5756, 49ffvelrnd 5632 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( `' N `  i )  e.  om )
5824ad2antrr 485 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( `' N `  m )  e.  om )
5955, 2, 57, 58frec2uzled 10385 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( ( `' N `  i ) 
C_  ( `' N `  m )  <->  ( N `  ( `' N `  i ) )  <_ 
( N `  ( `' N `  m ) ) ) )
60 f1ocnvfv2 5757 . . . . . . . . . . . . . . . . 17  |-  ( ( N : om -1-1-onto-> NN0  /\  i  e. 
NN0 )  ->  ( N `  ( `' N `  i )
)  =  i )
613, 49, 60sylancr 412 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( N `  ( `' N `  i ) )  =  i )
6223ad2antrr 485 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  m  e.  NN0 )
63 f1ocnvfv2 5757 . . . . . . . . . . . . . . . . 17  |-  ( ( N : om -1-1-onto-> NN0  /\  m  e. 
NN0 )  ->  ( N `  ( `' N `  m )
)  =  m )
643, 62, 63sylancr 412 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( N `  ( `' N `  m ) )  =  m )
6561, 64breq12d 4002 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( ( N `
 ( `' N `  i ) )  <_ 
( N `  ( `' N `  m ) )  <->  i  <_  m
) )
6659, 65bitrd 187 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( ( `' N `  i ) 
C_  ( `' N `  m )  <->  i  <_  m ) )
6754, 66mpbird 166 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( `' N `  i )  C_  ( `' N `  m ) )
68 nnsssuc 6481 . . . . . . . . . . . . . 14  |-  ( ( ( `' N `  i )  e.  om  /\  ( `' N `  m )  e.  om )  ->  ( ( `' N `  i ) 
C_  ( `' N `  m )  <->  ( `' N `  i )  e.  suc  ( `' N `  m ) ) )
6957, 58, 68syl2anc 409 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( ( `' N `  i ) 
C_  ( `' N `  m )  <->  ( `' N `  i )  e.  suc  ( `' N `  m ) ) )
7067, 69mpbid 146 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( `' N `  i )  e.  suc  ( `' N `  m ) )
711ad3antrrr 489 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  F : om -onto-> A )
72 fof 5420 . . . . . . . . . . . . . . 15  |-  ( F : om -onto-> A  ->  F : om --> A )
7371, 72syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  F : om --> A )
7473ffund 5351 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  Fun  F )
7573fdmd 5354 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  dom  F  =  om )
7657, 75eleqtrrd 2250 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( `' N `  i )  e.  dom  F )
77 funfvima 5727 . . . . . . . . . . . . 13  |-  ( ( Fun  F  /\  ( `' N `  i )  e.  dom  F )  ->  ( ( `' N `  i )  e.  suc  ( `' N `  m )  ->  ( F `  ( `' N `  i ) )  e.  ( F
" suc  ( `' N `  m )
) ) )
7874, 76, 77syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( ( `' N `  i )  e.  suc  ( `' N `  m )  ->  ( F `  ( `' N `  i ) )  e.  ( F
" suc  ( `' N `  m )
) ) )
7970, 78mpd 13 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( F `  ( `' N `  i ) )  e.  ( F
" suc  ( `' N `  m )
) )
8052, 79eqeltrd 2247 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( G `  i )  e.  ( F " suc  ( `' N `  m ) ) )
8180adantr 274 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  /\  ( G `  ( N `  k ) )  =  ( G `
 i ) )  ->  ( G `  i )  e.  ( F " suc  ( `' N `  m ) ) )
8246, 81eqeltrd 2247 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  /\  ( G `  ( N `  k ) )  =  ( G `
 i ) )  ->  ( G `  ( N `  k ) )  e.  ( F
" suc  ( `' N `  m )
) )
8345, 82mtand 660 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  -.  ( G `  ( N `  k
) )  =  ( G `  i ) )
8483neqned 2347 . . . . . 6  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( G `  ( N `  k ) )  =/=  ( G `
 i ) )
8584ralrimiva 2543 . . . . 5  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
k  e.  om  /\  -.  ( F `  k
)  e.  ( F
" suc  ( `' N `  m )
) ) )  ->  A. i  e.  (
0 ... m ) ( G `  ( N `
 k ) )  =/=  ( G `  i ) )
86 fveq2 5496 . . . . . . . 8  |-  ( j  =  ( N `  k )  ->  ( G `  j )  =  ( G `  ( N `  k ) ) )
8786neeq1d 2358 . . . . . . 7  |-  ( j  =  ( N `  k )  ->  (
( G `  j
)  =/=  ( G `
 i )  <->  ( G `  ( N `  k
) )  =/=  ( G `  i )
) )
8887ralbidv 2470 . . . . . 6  |-  ( j  =  ( N `  k )  ->  ( A. i  e.  (
0 ... m ) ( G `  j )  =/=  ( G `  i )  <->  A. i  e.  ( 0 ... m
) ( G `  ( N `  k ) )  =/=  ( G `
 i ) ) )
8988rspcev 2834 . . . . 5  |-  ( ( ( N `  k
)  e.  NN0  /\  A. i  e.  ( 0 ... m ) ( G `  ( N `
 k ) )  =/=  ( G `  i ) )  ->  E. j  e.  NN0  A. i  e.  ( 0 ... m ) ( G `  j )  =/=  ( G `  i ) )
9032, 85, 89syl2anc 409 . . . 4  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
k  e.  om  /\  -.  ( F `  k
)  e.  ( F
" suc  ( `' N `  m )
) ) )  ->  E. j  e.  NN0  A. i  e.  ( 0 ... m ) ( G `  j )  =/=  ( G `  i ) )
9127, 90rexlimddv 2592 . . 3  |-  ( (
ph  /\  m  e.  NN0 )  ->  E. j  e.  NN0  A. i  e.  ( 0 ... m
) ( G `  j )  =/=  ( G `  i )
)
9291ralrimiva 2543 . 2  |-  ( ph  ->  A. m  e.  NN0  E. j  e.  NN0  A. i  e.  ( 0 ... m
) ( G `  j )  =/=  ( G `  i )
)
9313, 92jca 304 1  |-  ( ph  ->  ( G : NN0 -onto-> A  /\  A. m  e. 
NN0  E. j  e.  NN0  A. i  e.  ( 0 ... m ) ( G `  j )  =/=  ( G `  i ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141    =/= wne 2340   A.wral 2448   E.wrex 2449    C_ wss 3121   class class class wbr 3989    |-> cmpt 4050   suc csuc 4350   omcom 4574   `'ccnv 4610   dom cdm 4611   "cima 4614    o. ccom 4615   Fun wfun 5192   -->wf 5194   -onto->wfo 5196   -1-1-onto->wf1o 5197   ` cfv 5198  (class class class)co 5853  freccfrec 6369   0cc0 7774   1c1 7775    + caddc 7777    <_ cle 7955   NN0cn0 9135   ZZcz 9212   ...cfz 9965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966
This theorem is referenced by:  ctinfom  12383
  Copyright terms: Public domain W3C validator