ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctinfomlemom Unicode version

Theorem ctinfomlemom 12644
Description: Lemma for ctinfom 12645. Converting between  om and  NN0. (Contributed by Jim Kingdon, 10-Aug-2023.)
Hypotheses
Ref Expression
ctinfom.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ctinfom.g  |-  G  =  ( F  o.  `' N )
ctinfom.f  |-  ( ph  ->  F : om -onto-> A
)
ctinfom.inf  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  -.  ( F `  k )  e.  ( F "
n ) )
Assertion
Ref Expression
ctinfomlemom  |-  ( ph  ->  ( G : NN0 -onto-> A  /\  A. m  e. 
NN0  E. j  e.  NN0  A. i  e.  ( 0 ... m ) ( G `  j )  =/=  ( G `  i ) ) )
Distinct variable groups:    i, F, x   
n, F    j, G, k    i, N, j, k   
n, N, k    x, N, k    i, m, j, k    ph, i, k, m, x    m, n
Allowed substitution hints:    ph( j, n)    A( x, i, j, k, m, n)    F( j, k, m)    G( x, i, m, n)    N( m)

Proof of Theorem ctinfomlemom
StepHypRef Expression
1 ctinfom.f . . . 4  |-  ( ph  ->  F : om -onto-> A
)
2 ctinfom.n . . . . . . 7  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
32frechashgf1o 10520 . . . . . 6  |-  N : om
-1-1-onto-> NN0
4 f1ocnv 5517 . . . . . 6  |-  ( N : om -1-1-onto-> NN0  ->  `' N : NN0
-1-1-onto-> om )
53, 4ax-mp 5 . . . . 5  |-  `' N : NN0
-1-1-onto-> om
6 f1ofo 5511 . . . . 5  |-  ( `' N : NN0 -1-1-onto-> om  ->  `' N : NN0 -onto-> om )
75, 6ax-mp 5 . . . 4  |-  `' N : NN0 -onto-> om
8 foco 5491 . . . 4  |-  ( ( F : om -onto-> A  /\  `' N : NN0 -onto-> om )  ->  ( F  o.  `' N ) : NN0 -onto-> A )
91, 7, 8sylancl 413 . . 3  |-  ( ph  ->  ( F  o.  `' N ) : NN0 -onto-> A )
10 ctinfom.g . . . 4  |-  G  =  ( F  o.  `' N )
11 foeq1 5476 . . . 4  |-  ( G  =  ( F  o.  `' N )  ->  ( G : NN0 -onto-> A  <->  ( F  o.  `' N ) : NN0 -onto-> A ) )
1210, 11ax-mp 5 . . 3  |-  ( G : NN0 -onto-> A  <->  ( F  o.  `' N ) : NN0 -onto-> A )
139, 12sylibr 134 . 2  |-  ( ph  ->  G : NN0 -onto-> A
)
14 imaeq2 5005 . . . . . . . 8  |-  ( n  =  suc  ( `' N `  m )  ->  ( F "
n )  =  ( F " suc  ( `' N `  m ) ) )
1514eleq2d 2266 . . . . . . 7  |-  ( n  =  suc  ( `' N `  m )  ->  ( ( F `
 k )  e.  ( F " n
)  <->  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )
1615notbid 668 . . . . . 6  |-  ( n  =  suc  ( `' N `  m )  ->  ( -.  ( F `  k )  e.  ( F " n
)  <->  -.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )
1716rexbidv 2498 . . . . 5  |-  ( n  =  suc  ( `' N `  m )  ->  ( E. k  e.  om  -.  ( F `
 k )  e.  ( F " n
)  <->  E. k  e.  om  -.  ( F `  k
)  e.  ( F
" suc  ( `' N `  m )
) ) )
18 ctinfom.inf . . . . . 6  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  -.  ( F `  k )  e.  ( F "
n ) )
1918adantr 276 . . . . 5  |-  ( (
ph  /\  m  e.  NN0 )  ->  A. n  e.  om  E. k  e. 
om  -.  ( F `  k )  e.  ( F " n ) )
20 f1of 5504 . . . . . . . . 9  |-  ( `' N : NN0 -1-1-onto-> om  ->  `' N : NN0 --> om )
215, 20ax-mp 5 . . . . . . . 8  |-  `' N : NN0 --> om
2221a1i 9 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN0 )  ->  `' N : NN0 --> om )
23 simpr 110 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN0 )  ->  m  e.  NN0 )
2422, 23ffvelcdmd 5698 . . . . . 6  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( `' N `  m )  e.  om )
25 peano2 4631 . . . . . 6  |-  ( ( `' N `  m )  e.  om  ->  suc  ( `' N `  m )  e.  om )
2624, 25syl 14 . . . . 5  |-  ( (
ph  /\  m  e.  NN0 )  ->  suc  ( `' N `  m )  e.  om )
2717, 19, 26rspcdva 2873 . . . 4  |-  ( (
ph  /\  m  e.  NN0 )  ->  E. k  e.  om  -.  ( F `
 k )  e.  ( F " suc  ( `' N `  m ) ) )
28 f1of 5504 . . . . . . . 8  |-  ( N : om -1-1-onto-> NN0  ->  N : om
--> NN0 )
293, 28ax-mp 5 . . . . . . 7  |-  N : om
--> NN0
3029a1i 9 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
k  e.  om  /\  -.  ( F `  k
)  e.  ( F
" suc  ( `' N `  m )
) ) )  ->  N : om --> NN0 )
31 simprl 529 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
k  e.  om  /\  -.  ( F `  k
)  e.  ( F
" suc  ( `' N `  m )
) ) )  -> 
k  e.  om )
3230, 31ffvelcdmd 5698 . . . . 5  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
k  e.  om  /\  -.  ( F `  k
)  e.  ( F
" suc  ( `' N `  m )
) ) )  -> 
( N `  k
)  e.  NN0 )
3310fveq1i 5559 . . . . . . . . . . 11  |-  ( G `
 ( N `  k ) )  =  ( ( F  o.  `' N ) `  ( N `  k )
)
3432adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( N `  k )  e.  NN0 )
35 fvco3 5632 . . . . . . . . . . . 12  |-  ( ( `' N : NN0 --> om  /\  ( N `  k )  e.  NN0 )  -> 
( ( F  o.  `' N ) `  ( N `  k )
)  =  ( F `
 ( `' N `  ( N `  k
) ) ) )
3621, 34, 35sylancr 414 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( ( F  o.  `' N ) `
 ( N `  k ) )  =  ( F `  ( `' N `  ( N `
 k ) ) ) )
3733, 36eqtrid 2241 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( G `  ( N `  k ) )  =  ( F `
 ( `' N `  ( N `  k
) ) ) )
3831adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  k  e.  om )
39 f1ocnvfv1 5824 . . . . . . . . . . . . 13  |-  ( ( N : om -1-1-onto-> NN0  /\  k  e. 
om )  ->  ( `' N `  ( N `
 k ) )  =  k )
403, 39mpan 424 . . . . . . . . . . . 12  |-  ( k  e.  om  ->  ( `' N `  ( N `
 k ) )  =  k )
4140fveq2d 5562 . . . . . . . . . . 11  |-  ( k  e.  om  ->  ( F `  ( `' N `  ( N `  k ) ) )  =  ( F `  k ) )
4238, 41syl 14 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( F `  ( `' N `  ( N `
 k ) ) )  =  ( F `
 k ) )
4337, 42eqtrd 2229 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( G `  ( N `  k ) )  =  ( F `
 k ) )
44 simplrr 536 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  -.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) )
4543, 44eqneltrd 2292 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  -.  ( G `  ( N `  k
) )  e.  ( F " suc  ( `' N `  m ) ) )
46 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  /\  ( G `  ( N `  k ) )  =  ( G `
 i ) )  ->  ( G `  ( N `  k ) )  =  ( G `
 i ) )
4710fveq1i 5559 . . . . . . . . . . . 12  |-  ( G `
 i )  =  ( ( F  o.  `' N ) `  i
)
48 elfznn0 10189 . . . . . . . . . . . . . 14  |-  ( i  e.  ( 0 ... m )  ->  i  e.  NN0 )
4948adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  i  e.  NN0 )
50 fvco3 5632 . . . . . . . . . . . . 13  |-  ( ( `' N : NN0 --> om  /\  i  e.  NN0 )  -> 
( ( F  o.  `' N ) `  i
)  =  ( F `
 ( `' N `  i ) ) )
5121, 49, 50sylancr 414 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( ( F  o.  `' N ) `
 i )  =  ( F `  ( `' N `  i ) ) )
5247, 51eqtrid 2241 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( G `  i )  =  ( F `  ( `' N `  i ) ) )
53 elfzle2 10103 . . . . . . . . . . . . . . 15  |-  ( i  e.  ( 0 ... m )  ->  i  <_  m )
5453adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  i  <_  m
)
55 0zd 9338 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  0  e.  ZZ )
5621a1i 9 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  `' N : NN0
--> om )
5756, 49ffvelcdmd 5698 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( `' N `  i )  e.  om )
5824ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( `' N `  m )  e.  om )
5955, 2, 57, 58frec2uzled 10521 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( ( `' N `  i ) 
C_  ( `' N `  m )  <->  ( N `  ( `' N `  i ) )  <_ 
( N `  ( `' N `  m ) ) ) )
60 f1ocnvfv2 5825 . . . . . . . . . . . . . . . . 17  |-  ( ( N : om -1-1-onto-> NN0  /\  i  e. 
NN0 )  ->  ( N `  ( `' N `  i )
)  =  i )
613, 49, 60sylancr 414 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( N `  ( `' N `  i ) )  =  i )
6223ad2antrr 488 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  m  e.  NN0 )
63 f1ocnvfv2 5825 . . . . . . . . . . . . . . . . 17  |-  ( ( N : om -1-1-onto-> NN0  /\  m  e. 
NN0 )  ->  ( N `  ( `' N `  m )
)  =  m )
643, 62, 63sylancr 414 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( N `  ( `' N `  m ) )  =  m )
6561, 64breq12d 4046 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( ( N `
 ( `' N `  i ) )  <_ 
( N `  ( `' N `  m ) )  <->  i  <_  m
) )
6659, 65bitrd 188 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( ( `' N `  i ) 
C_  ( `' N `  m )  <->  i  <_  m ) )
6754, 66mpbird 167 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( `' N `  i )  C_  ( `' N `  m ) )
68 nnsssuc 6560 . . . . . . . . . . . . . 14  |-  ( ( ( `' N `  i )  e.  om  /\  ( `' N `  m )  e.  om )  ->  ( ( `' N `  i ) 
C_  ( `' N `  m )  <->  ( `' N `  i )  e.  suc  ( `' N `  m ) ) )
6957, 58, 68syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( ( `' N `  i ) 
C_  ( `' N `  m )  <->  ( `' N `  i )  e.  suc  ( `' N `  m ) ) )
7067, 69mpbid 147 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( `' N `  i )  e.  suc  ( `' N `  m ) )
711ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  F : om -onto-> A )
72 fof 5480 . . . . . . . . . . . . . . 15  |-  ( F : om -onto-> A  ->  F : om --> A )
7371, 72syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  F : om --> A )
7473ffund 5411 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  Fun  F )
7573fdmd 5414 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  dom  F  =  om )
7657, 75eleqtrrd 2276 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( `' N `  i )  e.  dom  F )
77 funfvima 5794 . . . . . . . . . . . . 13  |-  ( ( Fun  F  /\  ( `' N `  i )  e.  dom  F )  ->  ( ( `' N `  i )  e.  suc  ( `' N `  m )  ->  ( F `  ( `' N `  i ) )  e.  ( F
" suc  ( `' N `  m )
) ) )
7874, 76, 77syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( ( `' N `  i )  e.  suc  ( `' N `  m )  ->  ( F `  ( `' N `  i ) )  e.  ( F
" suc  ( `' N `  m )
) ) )
7970, 78mpd 13 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( F `  ( `' N `  i ) )  e.  ( F
" suc  ( `' N `  m )
) )
8052, 79eqeltrd 2273 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( G `  i )  e.  ( F " suc  ( `' N `  m ) ) )
8180adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  /\  ( G `  ( N `  k ) )  =  ( G `
 i ) )  ->  ( G `  i )  e.  ( F " suc  ( `' N `  m ) ) )
8246, 81eqeltrd 2273 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  /\  ( G `  ( N `  k ) )  =  ( G `
 i ) )  ->  ( G `  ( N `  k ) )  e.  ( F
" suc  ( `' N `  m )
) )
8345, 82mtand 666 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  -.  ( G `  ( N `  k
) )  =  ( G `  i ) )
8483neqned 2374 . . . . . 6  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( k  e.  om  /\ 
-.  ( F `  k )  e.  ( F " suc  ( `' N `  m ) ) ) )  /\  i  e.  ( 0 ... m ) )  ->  ( G `  ( N `  k ) )  =/=  ( G `
 i ) )
8584ralrimiva 2570 . . . . 5  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
k  e.  om  /\  -.  ( F `  k
)  e.  ( F
" suc  ( `' N `  m )
) ) )  ->  A. i  e.  (
0 ... m ) ( G `  ( N `
 k ) )  =/=  ( G `  i ) )
86 fveq2 5558 . . . . . . . 8  |-  ( j  =  ( N `  k )  ->  ( G `  j )  =  ( G `  ( N `  k ) ) )
8786neeq1d 2385 . . . . . . 7  |-  ( j  =  ( N `  k )  ->  (
( G `  j
)  =/=  ( G `
 i )  <->  ( G `  ( N `  k
) )  =/=  ( G `  i )
) )
8887ralbidv 2497 . . . . . 6  |-  ( j  =  ( N `  k )  ->  ( A. i  e.  (
0 ... m ) ( G `  j )  =/=  ( G `  i )  <->  A. i  e.  ( 0 ... m
) ( G `  ( N `  k ) )  =/=  ( G `
 i ) ) )
8988rspcev 2868 . . . . 5  |-  ( ( ( N `  k
)  e.  NN0  /\  A. i  e.  ( 0 ... m ) ( G `  ( N `
 k ) )  =/=  ( G `  i ) )  ->  E. j  e.  NN0  A. i  e.  ( 0 ... m ) ( G `  j )  =/=  ( G `  i ) )
9032, 85, 89syl2anc 411 . . . 4  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
k  e.  om  /\  -.  ( F `  k
)  e.  ( F
" suc  ( `' N `  m )
) ) )  ->  E. j  e.  NN0  A. i  e.  ( 0 ... m ) ( G `  j )  =/=  ( G `  i ) )
9127, 90rexlimddv 2619 . . 3  |-  ( (
ph  /\  m  e.  NN0 )  ->  E. j  e.  NN0  A. i  e.  ( 0 ... m
) ( G `  j )  =/=  ( G `  i )
)
9291ralrimiva 2570 . 2  |-  ( ph  ->  A. m  e.  NN0  E. j  e.  NN0  A. i  e.  ( 0 ... m
) ( G `  j )  =/=  ( G `  i )
)
9313, 92jca 306 1  |-  ( ph  ->  ( G : NN0 -onto-> A  /\  A. m  e. 
NN0  E. j  e.  NN0  A. i  e.  ( 0 ... m ) ( G `  j )  =/=  ( G `  i ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167    =/= wne 2367   A.wral 2475   E.wrex 2476    C_ wss 3157   class class class wbr 4033    |-> cmpt 4094   suc csuc 4400   omcom 4626   `'ccnv 4662   dom cdm 4663   "cima 4666    o. ccom 4667   Fun wfun 5252   -->wf 5254   -onto->wfo 5256   -1-1-onto->wf1o 5257   ` cfv 5258  (class class class)co 5922  freccfrec 6448   0cc0 7879   1c1 7880    + caddc 7882    <_ cle 8062   NN0cn0 9249   ZZcz 9326   ...cfz 10083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084
This theorem is referenced by:  ctinfom  12645
  Copyright terms: Public domain W3C validator