| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > equvin | Unicode version | ||
| Description: A variable introduction law for equality. Lemma 15 of [Monk2] p. 109. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| equvin | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | equvini 1772 | 
. 2
 | |
| 2 | ax-17 1540 | 
. . 3
 | |
| 3 | equtr 1723 | 
. . . 4
 | |
| 4 | 3 | imp 124 | 
. . 3
 | 
| 5 | 2, 4 | exlimih 1607 | 
. 2
 | 
| 6 | 1, 5 | impbii 126 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-i12 1521 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |