ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equvin Unicode version

Theorem equvin 1851
Description: A variable introduction law for equality. Lemma 15 of [Monk2] p. 109. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
equvin  |-  ( x  =  y  <->  E. z
( x  =  z  /\  z  =  y ) )
Distinct variable groups:    x, z    y,
z

Proof of Theorem equvin
StepHypRef Expression
1 equvini 1746 . 2  |-  ( x  =  y  ->  E. z
( x  =  z  /\  z  =  y ) )
2 ax-17 1514 . . 3  |-  ( x  =  y  ->  A. z  x  =  y )
3 equtr 1697 . . . 4  |-  ( x  =  z  ->  (
z  =  y  ->  x  =  y )
)
43imp 123 . . 3  |-  ( ( x  =  z  /\  z  =  y )  ->  x  =  y )
52, 4exlimih 1581 . 2  |-  ( E. z ( x  =  z  /\  z  =  y )  ->  x  =  y )
61, 5impbii 125 1  |-  ( x  =  y  <->  E. z
( x  =  z  /\  z  =  y ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   E.wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-i12 1495  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator