Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > equvin | Unicode version |
Description: A variable introduction law for equality. Lemma 15 of [Monk2] p. 109. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
equvin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equvini 1751 | . 2 | |
2 | ax-17 1519 | . . 3 | |
3 | equtr 1702 | . . . 4 | |
4 | 3 | imp 123 | . . 3 |
5 | 2, 4 | exlimih 1586 | . 2 |
6 | 1, 5 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-i12 1500 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |