| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equvin | Unicode version | ||
| Description: A variable introduction law for equality. Lemma 15 of [Monk2] p. 109. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| equvin |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equvini 1772 |
. 2
| |
| 2 | ax-17 1540 |
. . 3
| |
| 3 | equtr 1723 |
. . . 4
| |
| 4 | 3 | imp 124 |
. . 3
|
| 5 | 2, 4 | exlimih 1607 |
. 2
|
| 6 | 1, 5 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-i12 1521 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |