ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exdistr Unicode version

Theorem exdistr 1902
Description: Distribution of existential quantifiers. (Contributed by NM, 9-Mar-1995.)
Assertion
Ref Expression
exdistr  |-  ( E. x E. y (
ph  /\  ps )  <->  E. x ( ph  /\  E. y ps ) )
Distinct variable group:    ph, y
Allowed substitution hints:    ph( x)    ps( x, y)

Proof of Theorem exdistr
StepHypRef Expression
1 19.42v 1899 . 2  |-  ( E. y ( ph  /\  ps )  <->  ( ph  /\  E. y ps ) )
21exbii 1598 1  |-  ( E. x E. y (
ph  /\  ps )  <->  E. x ( ph  /\  E. y ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   E.wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  exdistrv  1903  19.42vv  1904  3exdistr  1908  sbel2x  1991  sbexyz  1996  sbccomlem  3029  uniuni  4436  coass  5129  subhalfnqq  7376
  Copyright terms: Public domain W3C validator