ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exdistr Unicode version

Theorem exdistr 1861
Description: Distribution of existential quantifiers. (Contributed by NM, 9-Mar-1995.)
Assertion
Ref Expression
exdistr  |-  ( E. x E. y (
ph  /\  ps )  <->  E. x ( ph  /\  E. y ps ) )
Distinct variable group:    ph, y
Allowed substitution hints:    ph( x)    ps( x, y)

Proof of Theorem exdistr
StepHypRef Expression
1 19.42v 1860 . 2  |-  ( E. y ( ph  /\  ps )  <->  ( ph  /\  E. y ps ) )
21exbii 1567 1  |-  ( E. x E. y (
ph  /\  ps )  <->  E. x ( ph  /\  E. y ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   E.wex 1451
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1406  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-4 1470  ax-17 1489  ax-ial 1497
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  exdistrv  1862  19.42vv  1863  3exdistr  1867  sbel2x  1949  sbexyz  1954  sbccomlem  2951  uniuni  4332  coass  5015  subhalfnqq  7170
  Copyright terms: Public domain W3C validator