ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exdistr Unicode version

Theorem exdistr 1956
Description: Distribution of existential quantifiers. (Contributed by NM, 9-Mar-1995.)
Assertion
Ref Expression
exdistr  |-  ( E. x E. y (
ph  /\  ps )  <->  E. x ( ph  /\  E. y ps ) )
Distinct variable group:    ph, y
Allowed substitution hints:    ph( x)    ps( x, y)

Proof of Theorem exdistr
StepHypRef Expression
1 19.42v 1953 . 2  |-  ( E. y ( ph  /\  ps )  <->  ( ph  /\  E. y ps ) )
21exbii 1651 1  |-  ( E. x E. y (
ph  /\  ps )  <->  E. x ( ph  /\  E. y ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wex 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  exdistrv  1957  19.42vv  1958  3exdistr  1962  sbel2x  2049  sbexyz  2054  sbccomlem  3103  uniuni  4541  coass  5246  subhalfnqq  7597
  Copyright terms: Public domain W3C validator