Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > coass | Unicode version |
Description: Associative law for class composition. Theorem 27 of [Suppes] p. 64. Also Exercise 21 of [Enderton] p. 53. Interestingly, this law holds for any classes whatsoever, not just functions or even relations. (Contributed by NM, 27-Jan-1997.) |
Ref | Expression |
---|---|
coass |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relco 5102 | . 2 | |
2 | relco 5102 | . 2 | |
3 | excom 1652 | . . . 4 | |
4 | anass 399 | . . . . 5 | |
5 | 4 | 2exbii 1594 | . . . 4 |
6 | 3, 5 | bitr4i 186 | . . 3 |
7 | vex 2729 | . . . . . . 7 | |
8 | vex 2729 | . . . . . . 7 | |
9 | 7, 8 | brco 4775 | . . . . . 6 |
10 | 9 | anbi2i 453 | . . . . 5 |
11 | 10 | exbii 1593 | . . . 4 |
12 | vex 2729 | . . . . 5 | |
13 | 12, 8 | opelco 4776 | . . . 4 |
14 | exdistr 1897 | . . . 4 | |
15 | 11, 13, 14 | 3bitr4i 211 | . . 3 |
16 | vex 2729 | . . . . . . 7 | |
17 | 12, 16 | brco 4775 | . . . . . 6 |
18 | 17 | anbi1i 454 | . . . . 5 |
19 | 18 | exbii 1593 | . . . 4 |
20 | 12, 8 | opelco 4776 | . . . 4 |
21 | 19.41v 1890 | . . . . 5 | |
22 | 21 | exbii 1593 | . . . 4 |
23 | 19, 20, 22 | 3bitr4i 211 | . . 3 |
24 | 6, 15, 23 | 3bitr4i 211 | . 2 |
25 | 1, 2, 24 | eqrelriiv 4698 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1343 wex 1480 wcel 2136 cop 3579 class class class wbr 3982 ccom 4608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-co 4613 |
This theorem is referenced by: funcoeqres 5463 fcof1o 5757 tposco 6243 mapen 6812 hashfacen 10749 |
Copyright terms: Public domain | W3C validator |