ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coass Unicode version

Theorem coass 5149
Description: Associative law for class composition. Theorem 27 of [Suppes] p. 64. Also Exercise 21 of [Enderton] p. 53. Interestingly, this law holds for any classes whatsoever, not just functions or even relations. (Contributed by NM, 27-Jan-1997.)
Assertion
Ref Expression
coass  |-  ( ( A  o.  B )  o.  C )  =  ( A  o.  ( B  o.  C )
)

Proof of Theorem coass
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 5129 . 2  |-  Rel  (
( A  o.  B
)  o.  C )
2 relco 5129 . 2  |-  Rel  ( A  o.  ( B  o.  C ) )
3 excom 1664 . . . 4  |-  ( E. z E. w ( x C z  /\  ( z B w  /\  w A y ) )  <->  E. w E. z ( x C z  /\  ( z B w  /\  w A y ) ) )
4 anass 401 . . . . 5  |-  ( ( ( x C z  /\  z B w )  /\  w A y )  <->  ( x C z  /\  (
z B w  /\  w A y ) ) )
542exbii 1606 . . . 4  |-  ( E. w E. z ( ( x C z  /\  z B w )  /\  w A y )  <->  E. w E. z ( x C z  /\  ( z B w  /\  w A y ) ) )
63, 5bitr4i 187 . . 3  |-  ( E. z E. w ( x C z  /\  ( z B w  /\  w A y ) )  <->  E. w E. z ( ( x C z  /\  z B w )  /\  w A y ) )
7 vex 2742 . . . . . . 7  |-  z  e. 
_V
8 vex 2742 . . . . . . 7  |-  y  e. 
_V
97, 8brco 4800 . . . . . 6  |-  ( z ( A  o.  B
) y  <->  E. w
( z B w  /\  w A y ) )
109anbi2i 457 . . . . 5  |-  ( ( x C z  /\  z ( A  o.  B ) y )  <-> 
( x C z  /\  E. w ( z B w  /\  w A y ) ) )
1110exbii 1605 . . . 4  |-  ( E. z ( x C z  /\  z ( A  o.  B ) y )  <->  E. z
( x C z  /\  E. w ( z B w  /\  w A y ) ) )
12 vex 2742 . . . . 5  |-  x  e. 
_V
1312, 8opelco 4801 . . . 4  |-  ( <.
x ,  y >.  e.  ( ( A  o.  B )  o.  C
)  <->  E. z ( x C z  /\  z
( A  o.  B
) y ) )
14 exdistr 1909 . . . 4  |-  ( E. z E. w ( x C z  /\  ( z B w  /\  w A y ) )  <->  E. z
( x C z  /\  E. w ( z B w  /\  w A y ) ) )
1511, 13, 143bitr4i 212 . . 3  |-  ( <.
x ,  y >.  e.  ( ( A  o.  B )  o.  C
)  <->  E. z E. w
( x C z  /\  ( z B w  /\  w A y ) ) )
16 vex 2742 . . . . . . 7  |-  w  e. 
_V
1712, 16brco 4800 . . . . . 6  |-  ( x ( B  o.  C
) w  <->  E. z
( x C z  /\  z B w ) )
1817anbi1i 458 . . . . 5  |-  ( ( x ( B  o.  C ) w  /\  w A y )  <->  ( E. z ( x C z  /\  z B w )  /\  w A y ) )
1918exbii 1605 . . . 4  |-  ( E. w ( x ( B  o.  C ) w  /\  w A y )  <->  E. w
( E. z ( x C z  /\  z B w )  /\  w A y ) )
2012, 8opelco 4801 . . . 4  |-  ( <.
x ,  y >.  e.  ( A  o.  ( B  o.  C )
)  <->  E. w ( x ( B  o.  C
) w  /\  w A y ) )
21 19.41v 1902 . . . . 5  |-  ( E. z ( ( x C z  /\  z B w )  /\  w A y )  <->  ( E. z ( x C z  /\  z B w )  /\  w A y ) )
2221exbii 1605 . . . 4  |-  ( E. w E. z ( ( x C z  /\  z B w )  /\  w A y )  <->  E. w
( E. z ( x C z  /\  z B w )  /\  w A y ) )
2319, 20, 223bitr4i 212 . . 3  |-  ( <.
x ,  y >.  e.  ( A  o.  ( B  o.  C )
)  <->  E. w E. z
( ( x C z  /\  z B w )  /\  w A y ) )
246, 15, 233bitr4i 212 . 2  |-  ( <.
x ,  y >.  e.  ( ( A  o.  B )  o.  C
)  <->  <. x ,  y
>.  e.  ( A  o.  ( B  o.  C
) ) )
251, 2, 24eqrelriiv 4722 1  |-  ( ( A  o.  B )  o.  C )  =  ( A  o.  ( B  o.  C )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353   E.wex 1492    e. wcel 2148   <.cop 3597   class class class wbr 4005    o. ccom 4632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-co 4637
This theorem is referenced by:  funcoeqres  5494  fcof1o  5792  tposco  6278  mapen  6848  hashfacen  10818
  Copyright terms: Public domain W3C validator