ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subhalfnqq Unicode version

Theorem subhalfnqq 7527
Description: There is a number which is less than half of any positive fraction. The case where  A is one is Lemma 11.4 of [BauerTaylor], p. 50, and they use the word "approximate half" for such a number (since there may be constructions, for some structures other than the rationals themselves, which rely on such an approximate half but do not require division by two as seen at halfnqq 7523). (Contributed by Jim Kingdon, 25-Nov-2019.)
Assertion
Ref Expression
subhalfnqq  |-  ( A  e.  Q.  ->  E. x  e.  Q.  ( x  +Q  x )  <Q  A )
Distinct variable group:    x, A

Proof of Theorem subhalfnqq
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 halfnqq 7523 . . . . . 6  |-  ( A  e.  Q.  ->  E. y  e.  Q.  ( y  +Q  y )  =  A )
2 df-rex 2490 . . . . . . 7  |-  ( E. y  e.  Q.  (
y  +Q  y )  =  A  <->  E. y
( y  e.  Q.  /\  ( y  +Q  y
)  =  A ) )
3 halfnqq 7523 . . . . . . . . . 10  |-  ( y  e.  Q.  ->  E. x  e.  Q.  ( x  +Q  x )  =  y )
43adantr 276 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  ->  E. x  e.  Q.  ( x  +Q  x
)  =  y )
54ancli 323 . . . . . . . 8  |-  ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  ->  ( ( y  e.  Q.  /\  (
y  +Q  y )  =  A )  /\  E. x  e.  Q.  (
x  +Q  x )  =  y ) )
65eximi 1623 . . . . . . 7  |-  ( E. y ( y  e. 
Q.  /\  ( y  +Q  y )  =  A )  ->  E. y
( ( y  e. 
Q.  /\  ( y  +Q  y )  =  A )  /\  E. x  e.  Q.  ( x  +Q  x )  =  y ) )
72, 6sylbi 121 . . . . . 6  |-  ( E. y  e.  Q.  (
y  +Q  y )  =  A  ->  E. y
( ( y  e. 
Q.  /\  ( y  +Q  y )  =  A )  /\  E. x  e.  Q.  ( x  +Q  x )  =  y ) )
81, 7syl 14 . . . . 5  |-  ( A  e.  Q.  ->  E. y
( ( y  e. 
Q.  /\  ( y  +Q  y )  =  A )  /\  E. x  e.  Q.  ( x  +Q  x )  =  y ) )
9 df-rex 2490 . . . . . . 7  |-  ( E. x  e.  Q.  (
x  +Q  x )  =  y  <->  E. x
( x  e.  Q.  /\  ( x  +Q  x
)  =  y ) )
109anbi2i 457 . . . . . 6  |-  ( ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  /\  E. x  e. 
Q.  ( x  +Q  x )  =  y )  <->  ( ( y  e.  Q.  /\  (
y  +Q  y )  =  A )  /\  E. x ( x  e. 
Q.  /\  ( x  +Q  x )  =  y ) ) )
1110exbii 1628 . . . . 5  |-  ( E. y ( ( y  e.  Q.  /\  (
y  +Q  y )  =  A )  /\  E. x  e.  Q.  (
x  +Q  x )  =  y )  <->  E. y
( ( y  e. 
Q.  /\  ( y  +Q  y )  =  A )  /\  E. x
( x  e.  Q.  /\  ( x  +Q  x
)  =  y ) ) )
128, 11sylib 122 . . . 4  |-  ( A  e.  Q.  ->  E. y
( ( y  e. 
Q.  /\  ( y  +Q  y )  =  A )  /\  E. x
( x  e.  Q.  /\  ( x  +Q  x
)  =  y ) ) )
13 exdistr 1933 . . . 4  |-  ( E. y E. x ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  =  y ) )  <->  E. y
( ( y  e. 
Q.  /\  ( y  +Q  y )  =  A )  /\  E. x
( x  e.  Q.  /\  ( x  +Q  x
)  =  y ) ) )
1412, 13sylibr 134 . . 3  |-  ( A  e.  Q.  ->  E. y E. x ( ( y  e.  Q.  /\  (
y  +Q  y )  =  A )  /\  ( x  e.  Q.  /\  ( x  +Q  x
)  =  y ) ) )
15 simprl 529 . . . . . 6  |-  ( ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  =  y ) )  ->  x  e.  Q. )
16 simpll 527 . . . . . . . . 9  |-  ( ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  =  y ) )  ->  y  e.  Q. )
17 ltaddnq 7520 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  y  e.  Q. )  ->  y  <Q  ( y  +Q  y ) )
1816, 16, 17syl2anc 411 . . . . . . . 8  |-  ( ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  =  y ) )  ->  y  <Q  ( y  +Q  y
) )
19 breq2 4048 . . . . . . . . 9  |-  ( ( y  +Q  y )  =  A  ->  (
y  <Q  ( y  +Q  y )  <->  y  <Q  A ) )
2019ad2antlr 489 . . . . . . . 8  |-  ( ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  =  y ) )  ->  (
y  <Q  ( y  +Q  y )  <->  y  <Q  A ) )
2118, 20mpbid 147 . . . . . . 7  |-  ( ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  =  y ) )  ->  y  <Q  A )
22 breq1 4047 . . . . . . . 8  |-  ( ( x  +Q  x )  =  y  ->  (
( x  +Q  x
)  <Q  A  <->  y  <Q  A ) )
2322ad2antll 491 . . . . . . 7  |-  ( ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  =  y ) )  ->  (
( x  +Q  x
)  <Q  A  <->  y  <Q  A ) )
2421, 23mpbird 167 . . . . . 6  |-  ( ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  =  y ) )  ->  (
x  +Q  x ) 
<Q  A )
2515, 24jca 306 . . . . 5  |-  ( ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  =  y ) )  ->  (
x  e.  Q.  /\  ( x  +Q  x
)  <Q  A ) )
2625eximi 1623 . . . 4  |-  ( E. x ( ( y  e.  Q.  /\  (
y  +Q  y )  =  A )  /\  ( x  e.  Q.  /\  ( x  +Q  x
)  =  y ) )  ->  E. x
( x  e.  Q.  /\  ( x  +Q  x
)  <Q  A ) )
2726exlimiv 1621 . . 3  |-  ( E. y E. x ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  =  y ) )  ->  E. x
( x  e.  Q.  /\  ( x  +Q  x
)  <Q  A ) )
2814, 27syl 14 . 2  |-  ( A  e.  Q.  ->  E. x
( x  e.  Q.  /\  ( x  +Q  x
)  <Q  A ) )
29 df-rex 2490 . 2  |-  ( E. x  e.  Q.  (
x  +Q  x ) 
<Q  A  <->  E. x ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  A ) )
3028, 29sylibr 134 1  |-  ( A  e.  Q.  ->  E. x  e.  Q.  ( x  +Q  x )  <Q  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1515    e. wcel 2176   E.wrex 2485   class class class wbr 4044  (class class class)co 5944   Q.cnq 7393    +Q cplq 7395    <Q cltq 7398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-eprel 4336  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-1o 6502  df-oadd 6506  df-omul 6507  df-er 6620  df-ec 6622  df-qs 6626  df-ni 7417  df-pli 7418  df-mi 7419  df-lti 7420  df-plpq 7457  df-mpq 7458  df-enq 7460  df-nqqs 7461  df-plqqs 7462  df-mqqs 7463  df-1nqqs 7464  df-rq 7465  df-ltnqqs 7466
This theorem is referenced by:  prarloc  7616  cauappcvgprlemloc  7765  caucvgprlemloc  7788  caucvgprprlemml  7807  caucvgprprlemloc  7816
  Copyright terms: Public domain W3C validator