ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subhalfnqq Unicode version

Theorem subhalfnqq 7355
Description: There is a number which is less than half of any positive fraction. The case where  A is one is Lemma 11.4 of [BauerTaylor], p. 50, and they use the word "approximate half" for such a number (since there may be constructions, for some structures other than the rationals themselves, which rely on such an approximate half but do not require division by two as seen at halfnqq 7351). (Contributed by Jim Kingdon, 25-Nov-2019.)
Assertion
Ref Expression
subhalfnqq  |-  ( A  e.  Q.  ->  E. x  e.  Q.  ( x  +Q  x )  <Q  A )
Distinct variable group:    x, A

Proof of Theorem subhalfnqq
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 halfnqq 7351 . . . . . 6  |-  ( A  e.  Q.  ->  E. y  e.  Q.  ( y  +Q  y )  =  A )
2 df-rex 2450 . . . . . . 7  |-  ( E. y  e.  Q.  (
y  +Q  y )  =  A  <->  E. y
( y  e.  Q.  /\  ( y  +Q  y
)  =  A ) )
3 halfnqq 7351 . . . . . . . . . 10  |-  ( y  e.  Q.  ->  E. x  e.  Q.  ( x  +Q  x )  =  y )
43adantr 274 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  ->  E. x  e.  Q.  ( x  +Q  x
)  =  y )
54ancli 321 . . . . . . . 8  |-  ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  ->  ( ( y  e.  Q.  /\  (
y  +Q  y )  =  A )  /\  E. x  e.  Q.  (
x  +Q  x )  =  y ) )
65eximi 1588 . . . . . . 7  |-  ( E. y ( y  e. 
Q.  /\  ( y  +Q  y )  =  A )  ->  E. y
( ( y  e. 
Q.  /\  ( y  +Q  y )  =  A )  /\  E. x  e.  Q.  ( x  +Q  x )  =  y ) )
72, 6sylbi 120 . . . . . 6  |-  ( E. y  e.  Q.  (
y  +Q  y )  =  A  ->  E. y
( ( y  e. 
Q.  /\  ( y  +Q  y )  =  A )  /\  E. x  e.  Q.  ( x  +Q  x )  =  y ) )
81, 7syl 14 . . . . 5  |-  ( A  e.  Q.  ->  E. y
( ( y  e. 
Q.  /\  ( y  +Q  y )  =  A )  /\  E. x  e.  Q.  ( x  +Q  x )  =  y ) )
9 df-rex 2450 . . . . . . 7  |-  ( E. x  e.  Q.  (
x  +Q  x )  =  y  <->  E. x
( x  e.  Q.  /\  ( x  +Q  x
)  =  y ) )
109anbi2i 453 . . . . . 6  |-  ( ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  /\  E. x  e. 
Q.  ( x  +Q  x )  =  y )  <->  ( ( y  e.  Q.  /\  (
y  +Q  y )  =  A )  /\  E. x ( x  e. 
Q.  /\  ( x  +Q  x )  =  y ) ) )
1110exbii 1593 . . . . 5  |-  ( E. y ( ( y  e.  Q.  /\  (
y  +Q  y )  =  A )  /\  E. x  e.  Q.  (
x  +Q  x )  =  y )  <->  E. y
( ( y  e. 
Q.  /\  ( y  +Q  y )  =  A )  /\  E. x
( x  e.  Q.  /\  ( x  +Q  x
)  =  y ) ) )
128, 11sylib 121 . . . 4  |-  ( A  e.  Q.  ->  E. y
( ( y  e. 
Q.  /\  ( y  +Q  y )  =  A )  /\  E. x
( x  e.  Q.  /\  ( x  +Q  x
)  =  y ) ) )
13 exdistr 1897 . . . 4  |-  ( E. y E. x ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  =  y ) )  <->  E. y
( ( y  e. 
Q.  /\  ( y  +Q  y )  =  A )  /\  E. x
( x  e.  Q.  /\  ( x  +Q  x
)  =  y ) ) )
1412, 13sylibr 133 . . 3  |-  ( A  e.  Q.  ->  E. y E. x ( ( y  e.  Q.  /\  (
y  +Q  y )  =  A )  /\  ( x  e.  Q.  /\  ( x  +Q  x
)  =  y ) ) )
15 simprl 521 . . . . . 6  |-  ( ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  =  y ) )  ->  x  e.  Q. )
16 simpll 519 . . . . . . . . 9  |-  ( ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  =  y ) )  ->  y  e.  Q. )
17 ltaddnq 7348 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  y  e.  Q. )  ->  y  <Q  ( y  +Q  y ) )
1816, 16, 17syl2anc 409 . . . . . . . 8  |-  ( ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  =  y ) )  ->  y  <Q  ( y  +Q  y
) )
19 breq2 3986 . . . . . . . . 9  |-  ( ( y  +Q  y )  =  A  ->  (
y  <Q  ( y  +Q  y )  <->  y  <Q  A ) )
2019ad2antlr 481 . . . . . . . 8  |-  ( ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  =  y ) )  ->  (
y  <Q  ( y  +Q  y )  <->  y  <Q  A ) )
2118, 20mpbid 146 . . . . . . 7  |-  ( ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  =  y ) )  ->  y  <Q  A )
22 breq1 3985 . . . . . . . 8  |-  ( ( x  +Q  x )  =  y  ->  (
( x  +Q  x
)  <Q  A  <->  y  <Q  A ) )
2322ad2antll 483 . . . . . . 7  |-  ( ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  =  y ) )  ->  (
( x  +Q  x
)  <Q  A  <->  y  <Q  A ) )
2421, 23mpbird 166 . . . . . 6  |-  ( ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  =  y ) )  ->  (
x  +Q  x ) 
<Q  A )
2515, 24jca 304 . . . . 5  |-  ( ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  =  y ) )  ->  (
x  e.  Q.  /\  ( x  +Q  x
)  <Q  A ) )
2625eximi 1588 . . . 4  |-  ( E. x ( ( y  e.  Q.  /\  (
y  +Q  y )  =  A )  /\  ( x  e.  Q.  /\  ( x  +Q  x
)  =  y ) )  ->  E. x
( x  e.  Q.  /\  ( x  +Q  x
)  <Q  A ) )
2726exlimiv 1586 . . 3  |-  ( E. y E. x ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  =  y ) )  ->  E. x
( x  e.  Q.  /\  ( x  +Q  x
)  <Q  A ) )
2814, 27syl 14 . 2  |-  ( A  e.  Q.  ->  E. x
( x  e.  Q.  /\  ( x  +Q  x
)  <Q  A ) )
29 df-rex 2450 . 2  |-  ( E. x  e.  Q.  (
x  +Q  x ) 
<Q  A  <->  E. x ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  A ) )
3028, 29sylibr 133 1  |-  ( A  e.  Q.  ->  E. x  e.  Q.  ( x  +Q  x )  <Q  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343   E.wex 1480    e. wcel 2136   E.wrex 2445   class class class wbr 3982  (class class class)co 5842   Q.cnq 7221    +Q cplq 7223    <Q cltq 7226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294
This theorem is referenced by:  prarloc  7444  cauappcvgprlemloc  7593  caucvgprlemloc  7616  caucvgprprlemml  7635  caucvgprprlemloc  7644
  Copyright terms: Public domain W3C validator