ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subhalfnqq Unicode version

Theorem subhalfnqq 7222
Description: There is a number which is less than half of any positive fraction. The case where  A is one is Lemma 11.4 of [BauerTaylor], p. 50, and they use the word "approximate half" for such a number (since there may be constructions, for some structures other than the rationals themselves, which rely on such an approximate half but do not require division by two as seen at halfnqq 7218). (Contributed by Jim Kingdon, 25-Nov-2019.)
Assertion
Ref Expression
subhalfnqq  |-  ( A  e.  Q.  ->  E. x  e.  Q.  ( x  +Q  x )  <Q  A )
Distinct variable group:    x, A

Proof of Theorem subhalfnqq
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 halfnqq 7218 . . . . . 6  |-  ( A  e.  Q.  ->  E. y  e.  Q.  ( y  +Q  y )  =  A )
2 df-rex 2422 . . . . . . 7  |-  ( E. y  e.  Q.  (
y  +Q  y )  =  A  <->  E. y
( y  e.  Q.  /\  ( y  +Q  y
)  =  A ) )
3 halfnqq 7218 . . . . . . . . . 10  |-  ( y  e.  Q.  ->  E. x  e.  Q.  ( x  +Q  x )  =  y )
43adantr 274 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  ->  E. x  e.  Q.  ( x  +Q  x
)  =  y )
54ancli 321 . . . . . . . 8  |-  ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  ->  ( ( y  e.  Q.  /\  (
y  +Q  y )  =  A )  /\  E. x  e.  Q.  (
x  +Q  x )  =  y ) )
65eximi 1579 . . . . . . 7  |-  ( E. y ( y  e. 
Q.  /\  ( y  +Q  y )  =  A )  ->  E. y
( ( y  e. 
Q.  /\  ( y  +Q  y )  =  A )  /\  E. x  e.  Q.  ( x  +Q  x )  =  y ) )
72, 6sylbi 120 . . . . . 6  |-  ( E. y  e.  Q.  (
y  +Q  y )  =  A  ->  E. y
( ( y  e. 
Q.  /\  ( y  +Q  y )  =  A )  /\  E. x  e.  Q.  ( x  +Q  x )  =  y ) )
81, 7syl 14 . . . . 5  |-  ( A  e.  Q.  ->  E. y
( ( y  e. 
Q.  /\  ( y  +Q  y )  =  A )  /\  E. x  e.  Q.  ( x  +Q  x )  =  y ) )
9 df-rex 2422 . . . . . . 7  |-  ( E. x  e.  Q.  (
x  +Q  x )  =  y  <->  E. x
( x  e.  Q.  /\  ( x  +Q  x
)  =  y ) )
109anbi2i 452 . . . . . 6  |-  ( ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  /\  E. x  e. 
Q.  ( x  +Q  x )  =  y )  <->  ( ( y  e.  Q.  /\  (
y  +Q  y )  =  A )  /\  E. x ( x  e. 
Q.  /\  ( x  +Q  x )  =  y ) ) )
1110exbii 1584 . . . . 5  |-  ( E. y ( ( y  e.  Q.  /\  (
y  +Q  y )  =  A )  /\  E. x  e.  Q.  (
x  +Q  x )  =  y )  <->  E. y
( ( y  e. 
Q.  /\  ( y  +Q  y )  =  A )  /\  E. x
( x  e.  Q.  /\  ( x  +Q  x
)  =  y ) ) )
128, 11sylib 121 . . . 4  |-  ( A  e.  Q.  ->  E. y
( ( y  e. 
Q.  /\  ( y  +Q  y )  =  A )  /\  E. x
( x  e.  Q.  /\  ( x  +Q  x
)  =  y ) ) )
13 exdistr 1881 . . . 4  |-  ( E. y E. x ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  =  y ) )  <->  E. y
( ( y  e. 
Q.  /\  ( y  +Q  y )  =  A )  /\  E. x
( x  e.  Q.  /\  ( x  +Q  x
)  =  y ) ) )
1412, 13sylibr 133 . . 3  |-  ( A  e.  Q.  ->  E. y E. x ( ( y  e.  Q.  /\  (
y  +Q  y )  =  A )  /\  ( x  e.  Q.  /\  ( x  +Q  x
)  =  y ) ) )
15 simprl 520 . . . . . 6  |-  ( ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  =  y ) )  ->  x  e.  Q. )
16 simpll 518 . . . . . . . . 9  |-  ( ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  =  y ) )  ->  y  e.  Q. )
17 ltaddnq 7215 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  y  e.  Q. )  ->  y  <Q  ( y  +Q  y ) )
1816, 16, 17syl2anc 408 . . . . . . . 8  |-  ( ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  =  y ) )  ->  y  <Q  ( y  +Q  y
) )
19 breq2 3933 . . . . . . . . 9  |-  ( ( y  +Q  y )  =  A  ->  (
y  <Q  ( y  +Q  y )  <->  y  <Q  A ) )
2019ad2antlr 480 . . . . . . . 8  |-  ( ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  =  y ) )  ->  (
y  <Q  ( y  +Q  y )  <->  y  <Q  A ) )
2118, 20mpbid 146 . . . . . . 7  |-  ( ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  =  y ) )  ->  y  <Q  A )
22 breq1 3932 . . . . . . . 8  |-  ( ( x  +Q  x )  =  y  ->  (
( x  +Q  x
)  <Q  A  <->  y  <Q  A ) )
2322ad2antll 482 . . . . . . 7  |-  ( ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  =  y ) )  ->  (
( x  +Q  x
)  <Q  A  <->  y  <Q  A ) )
2421, 23mpbird 166 . . . . . 6  |-  ( ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  =  y ) )  ->  (
x  +Q  x ) 
<Q  A )
2515, 24jca 304 . . . . 5  |-  ( ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  =  y ) )  ->  (
x  e.  Q.  /\  ( x  +Q  x
)  <Q  A ) )
2625eximi 1579 . . . 4  |-  ( E. x ( ( y  e.  Q.  /\  (
y  +Q  y )  =  A )  /\  ( x  e.  Q.  /\  ( x  +Q  x
)  =  y ) )  ->  E. x
( x  e.  Q.  /\  ( x  +Q  x
)  <Q  A ) )
2726exlimiv 1577 . . 3  |-  ( E. y E. x ( ( y  e.  Q.  /\  ( y  +Q  y
)  =  A )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  =  y ) )  ->  E. x
( x  e.  Q.  /\  ( x  +Q  x
)  <Q  A ) )
2814, 27syl 14 . 2  |-  ( A  e.  Q.  ->  E. x
( x  e.  Q.  /\  ( x  +Q  x
)  <Q  A ) )
29 df-rex 2422 . 2  |-  ( E. x  e.  Q.  (
x  +Q  x ) 
<Q  A  <->  E. x ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  A ) )
3028, 29sylibr 133 1  |-  ( A  e.  Q.  ->  E. x  e.  Q.  ( x  +Q  x )  <Q  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331   E.wex 1468    e. wcel 1480   E.wrex 2417   class class class wbr 3929  (class class class)co 5774   Q.cnq 7088    +Q cplq 7090    <Q cltq 7093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161
This theorem is referenced by:  prarloc  7311  cauappcvgprlemloc  7460  caucvgprlemloc  7483  caucvgprprlemml  7502  caucvgprprlemloc  7511
  Copyright terms: Public domain W3C validator