| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uniuni | Unicode version | ||
| Description: Expression for double union that moves union into a class builder. (Contributed by FL, 28-May-2007.) |
| Ref | Expression |
|---|---|
| uniuni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni 3852 |
. . . . . 6
| |
| 2 | 1 | anbi2i 457 |
. . . . 5
|
| 3 | 2 | exbii 1627 |
. . . 4
|
| 4 | 19.42v 1929 |
. . . . . . 7
| |
| 5 | 4 | bicomi 132 |
. . . . . 6
|
| 6 | 5 | exbii 1627 |
. . . . 5
|
| 7 | excom 1686 |
. . . . . 6
| |
| 8 | anass 401 |
. . . . . . . 8
| |
| 9 | ancom 266 |
. . . . . . . 8
| |
| 10 | 8, 9 | bitr3i 186 |
. . . . . . 7
|
| 11 | 10 | 2exbii 1628 |
. . . . . 6
|
| 12 | exdistr 1932 |
. . . . . 6
| |
| 13 | 7, 11, 12 | 3bitri 206 |
. . . . 5
|
| 14 | eluni 3852 |
. . . . . . . 8
| |
| 15 | 14 | bicomi 132 |
. . . . . . 7
|
| 16 | 15 | anbi2i 457 |
. . . . . 6
|
| 17 | 16 | exbii 1627 |
. . . . 5
|
| 18 | 6, 13, 17 | 3bitri 206 |
. . . 4
|
| 19 | vex 2774 |
. . . . . . . . . . 11
| |
| 20 | 19 | uniex 4483 |
. . . . . . . . . 10
|
| 21 | eleq2 2268 |
. . . . . . . . . 10
| |
| 22 | 20, 21 | ceqsexv 2810 |
. . . . . . . . 9
|
| 23 | exancom 1630 |
. . . . . . . . 9
| |
| 24 | 22, 23 | bitr3i 186 |
. . . . . . . 8
|
| 25 | 24 | anbi2i 457 |
. . . . . . 7
|
| 26 | 19.42v 1929 |
. . . . . . 7
| |
| 27 | ancom 266 |
. . . . . . . . 9
| |
| 28 | anass 401 |
. . . . . . . . 9
| |
| 29 | 27, 28 | bitri 184 |
. . . . . . . 8
|
| 30 | 29 | exbii 1627 |
. . . . . . 7
|
| 31 | 25, 26, 30 | 3bitr2i 208 |
. . . . . 6
|
| 32 | 31 | exbii 1627 |
. . . . 5
|
| 33 | excom 1686 |
. . . . 5
| |
| 34 | exdistr 1932 |
. . . . . 6
| |
| 35 | vex 2774 |
. . . . . . . . . 10
| |
| 36 | eqeq1 2211 |
. . . . . . . . . . . 12
| |
| 37 | 36 | anbi1d 465 |
. . . . . . . . . . 11
|
| 38 | 37 | exbidv 1847 |
. . . . . . . . . 10
|
| 39 | 35, 38 | elab 2916 |
. . . . . . . . 9
|
| 40 | 39 | bicomi 132 |
. . . . . . . 8
|
| 41 | 40 | anbi2i 457 |
. . . . . . 7
|
| 42 | 41 | exbii 1627 |
. . . . . 6
|
| 43 | 34, 42 | bitri 184 |
. . . . 5
|
| 44 | 32, 33, 43 | 3bitri 206 |
. . . 4
|
| 45 | 3, 18, 44 | 3bitri 206 |
. . 3
|
| 46 | 45 | abbii 2320 |
. 2
|
| 47 | df-uni 3850 |
. 2
| |
| 48 | df-uni 3850 |
. 2
| |
| 49 | 46, 47, 48 | 3eqtr4i 2235 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 df-uni 3850 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |