| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > uniuni | Unicode version | ||
| Description: Expression for double union that moves union into a class builder. (Contributed by FL, 28-May-2007.) | 
| Ref | Expression | 
|---|---|
| uniuni | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eluni 3842 | 
. . . . . 6
 | |
| 2 | 1 | anbi2i 457 | 
. . . . 5
 | 
| 3 | 2 | exbii 1619 | 
. . . 4
 | 
| 4 | 19.42v 1921 | 
. . . . . . 7
 | |
| 5 | 4 | bicomi 132 | 
. . . . . 6
 | 
| 6 | 5 | exbii 1619 | 
. . . . 5
 | 
| 7 | excom 1678 | 
. . . . . 6
 | |
| 8 | anass 401 | 
. . . . . . . 8
 | |
| 9 | ancom 266 | 
. . . . . . . 8
 | |
| 10 | 8, 9 | bitr3i 186 | 
. . . . . . 7
 | 
| 11 | 10 | 2exbii 1620 | 
. . . . . 6
 | 
| 12 | exdistr 1924 | 
. . . . . 6
 | |
| 13 | 7, 11, 12 | 3bitri 206 | 
. . . . 5
 | 
| 14 | eluni 3842 | 
. . . . . . . 8
 | |
| 15 | 14 | bicomi 132 | 
. . . . . . 7
 | 
| 16 | 15 | anbi2i 457 | 
. . . . . 6
 | 
| 17 | 16 | exbii 1619 | 
. . . . 5
 | 
| 18 | 6, 13, 17 | 3bitri 206 | 
. . . 4
 | 
| 19 | vex 2766 | 
. . . . . . . . . . 11
 | |
| 20 | 19 | uniex 4472 | 
. . . . . . . . . 10
 | 
| 21 | eleq2 2260 | 
. . . . . . . . . 10
 | |
| 22 | 20, 21 | ceqsexv 2802 | 
. . . . . . . . 9
 | 
| 23 | exancom 1622 | 
. . . . . . . . 9
 | |
| 24 | 22, 23 | bitr3i 186 | 
. . . . . . . 8
 | 
| 25 | 24 | anbi2i 457 | 
. . . . . . 7
 | 
| 26 | 19.42v 1921 | 
. . . . . . 7
 | |
| 27 | ancom 266 | 
. . . . . . . . 9
 | |
| 28 | anass 401 | 
. . . . . . . . 9
 | |
| 29 | 27, 28 | bitri 184 | 
. . . . . . . 8
 | 
| 30 | 29 | exbii 1619 | 
. . . . . . 7
 | 
| 31 | 25, 26, 30 | 3bitr2i 208 | 
. . . . . 6
 | 
| 32 | 31 | exbii 1619 | 
. . . . 5
 | 
| 33 | excom 1678 | 
. . . . 5
 | |
| 34 | exdistr 1924 | 
. . . . . 6
 | |
| 35 | vex 2766 | 
. . . . . . . . . 10
 | |
| 36 | eqeq1 2203 | 
. . . . . . . . . . . 12
 | |
| 37 | 36 | anbi1d 465 | 
. . . . . . . . . . 11
 | 
| 38 | 37 | exbidv 1839 | 
. . . . . . . . . 10
 | 
| 39 | 35, 38 | elab 2908 | 
. . . . . . . . 9
 | 
| 40 | 39 | bicomi 132 | 
. . . . . . . 8
 | 
| 41 | 40 | anbi2i 457 | 
. . . . . . 7
 | 
| 42 | 41 | exbii 1619 | 
. . . . . 6
 | 
| 43 | 34, 42 | bitri 184 | 
. . . . 5
 | 
| 44 | 32, 33, 43 | 3bitri 206 | 
. . . 4
 | 
| 45 | 3, 18, 44 | 3bitri 206 | 
. . 3
 | 
| 46 | 45 | abbii 2312 | 
. 2
 | 
| 47 | df-uni 3840 | 
. 2
 | |
| 48 | df-uni 3840 | 
. 2
 | |
| 49 | 46, 47, 48 | 3eqtr4i 2227 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-uni 3840 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |