ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniuni Unicode version

Theorem uniuni 4486
Description: Expression for double union that moves union into a class builder. (Contributed by FL, 28-May-2007.)
Assertion
Ref Expression
uniuni  |-  U. U. A  =  U. { x  |  E. y ( x  =  U. y  /\  y  e.  A ) }
Distinct variable group:    x, A, y

Proof of Theorem uniuni
Dummy variables  v  z  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni 3842 . . . . . 6  |-  ( u  e.  U. A  <->  E. y
( u  e.  y  /\  y  e.  A
) )
21anbi2i 457 . . . . 5  |-  ( ( z  e.  u  /\  u  e.  U. A )  <-> 
( z  e.  u  /\  E. y ( u  e.  y  /\  y  e.  A ) ) )
32exbii 1619 . . . 4  |-  ( E. u ( z  e.  u  /\  u  e. 
U. A )  <->  E. u
( z  e.  u  /\  E. y ( u  e.  y  /\  y  e.  A ) ) )
4 19.42v 1921 . . . . . . 7  |-  ( E. y ( z  e.  u  /\  ( u  e.  y  /\  y  e.  A ) )  <->  ( z  e.  u  /\  E. y
( u  e.  y  /\  y  e.  A
) ) )
54bicomi 132 . . . . . 6  |-  ( ( z  e.  u  /\  E. y ( u  e.  y  /\  y  e.  A ) )  <->  E. y
( z  e.  u  /\  ( u  e.  y  /\  y  e.  A
) ) )
65exbii 1619 . . . . 5  |-  ( E. u ( z  e.  u  /\  E. y
( u  e.  y  /\  y  e.  A
) )  <->  E. u E. y ( z  e.  u  /\  ( u  e.  y  /\  y  e.  A ) ) )
7 excom 1678 . . . . . 6  |-  ( E. u E. y ( z  e.  u  /\  ( u  e.  y  /\  y  e.  A
) )  <->  E. y E. u ( z  e.  u  /\  ( u  e.  y  /\  y  e.  A ) ) )
8 anass 401 . . . . . . . 8  |-  ( ( ( z  e.  u  /\  u  e.  y
)  /\  y  e.  A )  <->  ( z  e.  u  /\  (
u  e.  y  /\  y  e.  A )
) )
9 ancom 266 . . . . . . . 8  |-  ( ( ( z  e.  u  /\  u  e.  y
)  /\  y  e.  A )  <->  ( y  e.  A  /\  (
z  e.  u  /\  u  e.  y )
) )
108, 9bitr3i 186 . . . . . . 7  |-  ( ( z  e.  u  /\  ( u  e.  y  /\  y  e.  A
) )  <->  ( y  e.  A  /\  (
z  e.  u  /\  u  e.  y )
) )
11102exbii 1620 . . . . . 6  |-  ( E. y E. u ( z  e.  u  /\  ( u  e.  y  /\  y  e.  A
) )  <->  E. y E. u ( y  e.  A  /\  ( z  e.  u  /\  u  e.  y ) ) )
12 exdistr 1924 . . . . . 6  |-  ( E. y E. u ( y  e.  A  /\  ( z  e.  u  /\  u  e.  y
) )  <->  E. y
( y  e.  A  /\  E. u ( z  e.  u  /\  u  e.  y ) ) )
137, 11, 123bitri 206 . . . . 5  |-  ( E. u E. y ( z  e.  u  /\  ( u  e.  y  /\  y  e.  A
) )  <->  E. y
( y  e.  A  /\  E. u ( z  e.  u  /\  u  e.  y ) ) )
14 eluni 3842 . . . . . . . 8  |-  ( z  e.  U. y  <->  E. u
( z  e.  u  /\  u  e.  y
) )
1514bicomi 132 . . . . . . 7  |-  ( E. u ( z  e.  u  /\  u  e.  y )  <->  z  e.  U. y )
1615anbi2i 457 . . . . . 6  |-  ( ( y  e.  A  /\  E. u ( z  e.  u  /\  u  e.  y ) )  <->  ( y  e.  A  /\  z  e.  U. y ) )
1716exbii 1619 . . . . 5  |-  ( E. y ( y  e.  A  /\  E. u
( z  e.  u  /\  u  e.  y
) )  <->  E. y
( y  e.  A  /\  z  e.  U. y
) )
186, 13, 173bitri 206 . . . 4  |-  ( E. u ( z  e.  u  /\  E. y
( u  e.  y  /\  y  e.  A
) )  <->  E. y
( y  e.  A  /\  z  e.  U. y
) )
19 vex 2766 . . . . . . . . . . 11  |-  y  e. 
_V
2019uniex 4472 . . . . . . . . . 10  |-  U. y  e.  _V
21 eleq2 2260 . . . . . . . . . 10  |-  ( v  =  U. y  -> 
( z  e.  v  <-> 
z  e.  U. y
) )
2220, 21ceqsexv 2802 . . . . . . . . 9  |-  ( E. v ( v  = 
U. y  /\  z  e.  v )  <->  z  e.  U. y )
23 exancom 1622 . . . . . . . . 9  |-  ( E. v ( v  = 
U. y  /\  z  e.  v )  <->  E. v
( z  e.  v  /\  v  =  U. y ) )
2422, 23bitr3i 186 . . . . . . . 8  |-  ( z  e.  U. y  <->  E. v
( z  e.  v  /\  v  =  U. y ) )
2524anbi2i 457 . . . . . . 7  |-  ( ( y  e.  A  /\  z  e.  U. y
)  <->  ( y  e.  A  /\  E. v
( z  e.  v  /\  v  =  U. y ) ) )
26 19.42v 1921 . . . . . . 7  |-  ( E. v ( y  e.  A  /\  ( z  e.  v  /\  v  =  U. y ) )  <-> 
( y  e.  A  /\  E. v ( z  e.  v  /\  v  =  U. y ) ) )
27 ancom 266 . . . . . . . . 9  |-  ( ( y  e.  A  /\  ( z  e.  v  /\  v  =  U. y ) )  <->  ( (
z  e.  v  /\  v  =  U. y
)  /\  y  e.  A ) )
28 anass 401 . . . . . . . . 9  |-  ( ( ( z  e.  v  /\  v  =  U. y )  /\  y  e.  A )  <->  ( z  e.  v  /\  (
v  =  U. y  /\  y  e.  A
) ) )
2927, 28bitri 184 . . . . . . . 8  |-  ( ( y  e.  A  /\  ( z  e.  v  /\  v  =  U. y ) )  <->  ( z  e.  v  /\  (
v  =  U. y  /\  y  e.  A
) ) )
3029exbii 1619 . . . . . . 7  |-  ( E. v ( y  e.  A  /\  ( z  e.  v  /\  v  =  U. y ) )  <->  E. v ( z  e.  v  /\  ( v  =  U. y  /\  y  e.  A )
) )
3125, 26, 303bitr2i 208 . . . . . 6  |-  ( ( y  e.  A  /\  z  e.  U. y
)  <->  E. v ( z  e.  v  /\  (
v  =  U. y  /\  y  e.  A
) ) )
3231exbii 1619 . . . . 5  |-  ( E. y ( y  e.  A  /\  z  e. 
U. y )  <->  E. y E. v ( z  e.  v  /\  ( v  =  U. y  /\  y  e.  A )
) )
33 excom 1678 . . . . 5  |-  ( E. y E. v ( z  e.  v  /\  ( v  =  U. y  /\  y  e.  A
) )  <->  E. v E. y ( z  e.  v  /\  ( v  =  U. y  /\  y  e.  A )
) )
34 exdistr 1924 . . . . . 6  |-  ( E. v E. y ( z  e.  v  /\  ( v  =  U. y  /\  y  e.  A
) )  <->  E. v
( z  e.  v  /\  E. y ( v  =  U. y  /\  y  e.  A
) ) )
35 vex 2766 . . . . . . . . . 10  |-  v  e. 
_V
36 eqeq1 2203 . . . . . . . . . . . 12  |-  ( x  =  v  ->  (
x  =  U. y  <->  v  =  U. y ) )
3736anbi1d 465 . . . . . . . . . . 11  |-  ( x  =  v  ->  (
( x  =  U. y  /\  y  e.  A
)  <->  ( v  = 
U. y  /\  y  e.  A ) ) )
3837exbidv 1839 . . . . . . . . . 10  |-  ( x  =  v  ->  ( E. y ( x  = 
U. y  /\  y  e.  A )  <->  E. y
( v  =  U. y  /\  y  e.  A
) ) )
3935, 38elab 2908 . . . . . . . . 9  |-  ( v  e.  { x  |  E. y ( x  =  U. y  /\  y  e.  A ) } 
<->  E. y ( v  =  U. y  /\  y  e.  A )
)
4039bicomi 132 . . . . . . . 8  |-  ( E. y ( v  = 
U. y  /\  y  e.  A )  <->  v  e.  { x  |  E. y
( x  =  U. y  /\  y  e.  A
) } )
4140anbi2i 457 . . . . . . 7  |-  ( ( z  e.  v  /\  E. y ( v  = 
U. y  /\  y  e.  A ) )  <->  ( z  e.  v  /\  v  e.  { x  |  E. y ( x  = 
U. y  /\  y  e.  A ) } ) )
4241exbii 1619 . . . . . 6  |-  ( E. v ( z  e.  v  /\  E. y
( v  =  U. y  /\  y  e.  A
) )  <->  E. v
( z  e.  v  /\  v  e.  {
x  |  E. y
( x  =  U. y  /\  y  e.  A
) } ) )
4334, 42bitri 184 . . . . 5  |-  ( E. v E. y ( z  e.  v  /\  ( v  =  U. y  /\  y  e.  A
) )  <->  E. v
( z  e.  v  /\  v  e.  {
x  |  E. y
( x  =  U. y  /\  y  e.  A
) } ) )
4432, 33, 433bitri 206 . . . 4  |-  ( E. y ( y  e.  A  /\  z  e. 
U. y )  <->  E. v
( z  e.  v  /\  v  e.  {
x  |  E. y
( x  =  U. y  /\  y  e.  A
) } ) )
453, 18, 443bitri 206 . . 3  |-  ( E. u ( z  e.  u  /\  u  e. 
U. A )  <->  E. v
( z  e.  v  /\  v  e.  {
x  |  E. y
( x  =  U. y  /\  y  e.  A
) } ) )
4645abbii 2312 . 2  |-  { z  |  E. u ( z  e.  u  /\  u  e.  U. A ) }  =  { z  |  E. v ( z  e.  v  /\  v  e.  { x  |  E. y ( x  =  U. y  /\  y  e.  A ) } ) }
47 df-uni 3840 . 2  |-  U. U. A  =  { z  |  E. u ( z  e.  u  /\  u  e.  U. A ) }
48 df-uni 3840 . 2  |-  U. {
x  |  E. y
( x  =  U. y  /\  y  e.  A
) }  =  {
z  |  E. v
( z  e.  v  /\  v  e.  {
x  |  E. y
( x  =  U. y  /\  y  e.  A
) } ) }
4946, 47, 483eqtr4i 2227 1  |-  U. U. A  =  U. { x  |  E. y ( x  =  U. y  /\  y  e.  A ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   E.wex 1506    e. wcel 2167   {cab 2182   U.cuni 3839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-uni 3840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator