| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbccomlem | Unicode version | ||
| Description: Lemma for sbccom 3104. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 18-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbccomlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excom 1710 |
. . . 4
| |
| 2 | exdistr 1956 |
. . . 4
| |
| 3 | an12 561 |
. . . . . . 7
| |
| 4 | 3 | exbii 1651 |
. . . . . 6
|
| 5 | 19.42v 1953 |
. . . . . 6
| |
| 6 | 4, 5 | bitri 184 |
. . . . 5
|
| 7 | 6 | exbii 1651 |
. . . 4
|
| 8 | 1, 2, 7 | 3bitr3i 210 |
. . 3
|
| 9 | sbc5 3052 |
. . 3
| |
| 10 | sbc5 3052 |
. . 3
| |
| 11 | 8, 9, 10 | 3bitr4i 212 |
. 2
|
| 12 | sbc5 3052 |
. . 3
| |
| 13 | 12 | sbcbii 3088 |
. 2
|
| 14 | sbc5 3052 |
. . 3
| |
| 15 | 14 | sbcbii 3088 |
. 2
|
| 16 | 11, 13, 15 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-sbc 3029 |
| This theorem is referenced by: sbccom 3104 |
| Copyright terms: Public domain | W3C validator |