ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbccomlem Unicode version

Theorem sbccomlem 3029
Description: Lemma for sbccom 3030. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 18-Oct-2016.)
Assertion
Ref Expression
sbccomlem  |-  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. B  / 
y ]. [. A  /  x ]. ph )
Distinct variable groups:    x, y, A   
x, B, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem sbccomlem
StepHypRef Expression
1 excom 1657 . . . 4  |-  ( E. x E. y ( x  =  A  /\  ( y  =  B  /\  ph ) )  <->  E. y E. x ( x  =  A  /\  ( y  =  B  /\  ph ) ) )
2 exdistr 1902 . . . 4  |-  ( E. x E. y ( x  =  A  /\  ( y  =  B  /\  ph ) )  <->  E. x ( x  =  A  /\  E. y
( y  =  B  /\  ph ) ) )
3 an12 556 . . . . . . 7  |-  ( ( x  =  A  /\  ( y  =  B  /\  ph ) )  <-> 
( y  =  B  /\  ( x  =  A  /\  ph )
) )
43exbii 1598 . . . . . 6  |-  ( E. x ( x  =  A  /\  ( y  =  B  /\  ph ) )  <->  E. x
( y  =  B  /\  ( x  =  A  /\  ph )
) )
5 19.42v 1899 . . . . . 6  |-  ( E. x ( y  =  B  /\  ( x  =  A  /\  ph ) )  <->  ( y  =  B  /\  E. x
( x  =  A  /\  ph ) ) )
64, 5bitri 183 . . . . 5  |-  ( E. x ( x  =  A  /\  ( y  =  B  /\  ph ) )  <->  ( y  =  B  /\  E. x
( x  =  A  /\  ph ) ) )
76exbii 1598 . . . 4  |-  ( E. y E. x ( x  =  A  /\  ( y  =  B  /\  ph ) )  <->  E. y ( y  =  B  /\  E. x
( x  =  A  /\  ph ) ) )
81, 2, 73bitr3i 209 . . 3  |-  ( E. x ( x  =  A  /\  E. y
( y  =  B  /\  ph ) )  <->  E. y ( y  =  B  /\  E. x
( x  =  A  /\  ph ) ) )
9 sbc5 2978 . . 3  |-  ( [. A  /  x ]. E. y ( y  =  B  /\  ph )  <->  E. x ( x  =  A  /\  E. y
( y  =  B  /\  ph ) ) )
10 sbc5 2978 . . 3  |-  ( [. B  /  y ]. E. x ( x  =  A  /\  ph )  <->  E. y ( y  =  B  /\  E. x
( x  =  A  /\  ph ) ) )
118, 9, 103bitr4i 211 . 2  |-  ( [. A  /  x ]. E. y ( y  =  B  /\  ph )  <->  [. B  /  y ]. E. x ( x  =  A  /\  ph )
)
12 sbc5 2978 . . 3  |-  ( [. B  /  y ]. ph  <->  E. y
( y  =  B  /\  ph ) )
1312sbcbii 3014 . 2  |-  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. A  /  x ]. E. y ( y  =  B  /\  ph ) )
14 sbc5 2978 . . 3  |-  ( [. A  /  x ]. ph  <->  E. x
( x  =  A  /\  ph ) )
1514sbcbii 3014 . 2  |-  ( [. B  /  y ]. [. A  /  x ]. ph  <->  [. B  / 
y ]. E. x ( x  =  A  /\  ph ) )
1611, 13, 153bitr4i 211 1  |-  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. B  / 
y ]. [. A  /  x ]. ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1348   E.wex 1485   [.wsbc 2955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-sbc 2956
This theorem is referenced by:  sbccom  3030
  Copyright terms: Public domain W3C validator