| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbccomlem | Unicode version | ||
| Description: Lemma for sbccom 3074. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 18-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbccomlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excom 1687 |
. . . 4
| |
| 2 | exdistr 1933 |
. . . 4
| |
| 3 | an12 561 |
. . . . . . 7
| |
| 4 | 3 | exbii 1628 |
. . . . . 6
|
| 5 | 19.42v 1930 |
. . . . . 6
| |
| 6 | 4, 5 | bitri 184 |
. . . . 5
|
| 7 | 6 | exbii 1628 |
. . . 4
|
| 8 | 1, 2, 7 | 3bitr3i 210 |
. . 3
|
| 9 | sbc5 3022 |
. . 3
| |
| 10 | sbc5 3022 |
. . 3
| |
| 11 | 8, 9, 10 | 3bitr4i 212 |
. 2
|
| 12 | sbc5 3022 |
. . 3
| |
| 13 | 12 | sbcbii 3058 |
. 2
|
| 14 | sbc5 3022 |
. . 3
| |
| 15 | 14 | sbcbii 3058 |
. 2
|
| 16 | 11, 13, 15 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-sbc 2999 |
| This theorem is referenced by: sbccom 3074 |
| Copyright terms: Public domain | W3C validator |