| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvmptdf | Unicode version | ||
| Description: Alternate deduction version of fvmpt 5679, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.) |
| Ref | Expression |
|---|---|
| fvmptdf.1 |
|
| fvmptdf.2 |
|
| fvmptdf.3 |
|
| fvmptdf.4 |
|
| fvmptdf.5 |
|
| Ref | Expression |
|---|---|
| fvmptdf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 |
. 2
| |
| 2 | fvmptdf.4 |
. . . 4
| |
| 3 | nfmpt1 4153 |
. . . 4
| |
| 4 | 2, 3 | nfeq 2358 |
. . 3
|
| 5 | fvmptdf.5 |
. . 3
| |
| 6 | 4, 5 | nfim 1596 |
. 2
|
| 7 | fvmptdf.1 |
. . . 4
| |
| 8 | elex 2788 |
. . . 4
| |
| 9 | 7, 8 | syl 14 |
. . 3
|
| 10 | isset 2783 |
. . 3
| |
| 11 | 9, 10 | sylib 122 |
. 2
|
| 12 | fveq1 5598 |
. . 3
| |
| 13 | simpr 110 |
. . . . . . 7
| |
| 14 | 13 | fveq2d 5603 |
. . . . . 6
|
| 15 | 7 | adantr 276 |
. . . . . . . 8
|
| 16 | 13, 15 | eqeltrd 2284 |
. . . . . . 7
|
| 17 | fvmptdf.2 |
. . . . . . 7
| |
| 18 | eqid 2207 |
. . . . . . . 8
| |
| 19 | 18 | fvmpt2 5686 |
. . . . . . 7
|
| 20 | 16, 17, 19 | syl2anc 411 |
. . . . . 6
|
| 21 | 14, 20 | eqtr3d 2242 |
. . . . 5
|
| 22 | 21 | eqeq2d 2219 |
. . . 4
|
| 23 | fvmptdf.3 |
. . . 4
| |
| 24 | 22, 23 | sylbid 150 |
. . 3
|
| 25 | 12, 24 | syl5 32 |
. 2
|
| 26 | 1, 6, 11, 25 | exlimdd 1896 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 |
| This theorem is referenced by: fvmptdv 5691 |
| Copyright terms: Public domain | W3C validator |