ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptdf Unicode version

Theorem fvmptdf 5390
Description: Alternate deduction version of fvmpt 5381, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypotheses
Ref Expression
fvmptdf.1  |-  ( ph  ->  A  e.  D )
fvmptdf.2  |-  ( (
ph  /\  x  =  A )  ->  B  e.  V )
fvmptdf.3  |-  ( (
ph  /\  x  =  A )  ->  (
( F `  A
)  =  B  ->  ps ) )
fvmptdf.4  |-  F/_ x F
fvmptdf.5  |-  F/ x ps
Assertion
Ref Expression
fvmptdf  |-  ( ph  ->  ( F  =  ( x  e.  D  |->  B )  ->  ps )
)
Distinct variable groups:    x, A    x, D    ph, x
Allowed substitution hints:    ps( x)    B( x)    F( x)    V( x)

Proof of Theorem fvmptdf
StepHypRef Expression
1 nfv 1466 . 2  |-  F/ x ph
2 fvmptdf.4 . . . 4  |-  F/_ x F
3 nfmpt1 3931 . . . 4  |-  F/_ x
( x  e.  D  |->  B )
42, 3nfeq 2236 . . 3  |-  F/ x  F  =  ( x  e.  D  |->  B )
5 fvmptdf.5 . . 3  |-  F/ x ps
64, 5nfim 1509 . 2  |-  F/ x
( F  =  ( x  e.  D  |->  B )  ->  ps )
7 fvmptdf.1 . . . 4  |-  ( ph  ->  A  e.  D )
8 elex 2630 . . . 4  |-  ( A  e.  D  ->  A  e.  _V )
97, 8syl 14 . . 3  |-  ( ph  ->  A  e.  _V )
10 isset 2625 . . 3  |-  ( A  e.  _V  <->  E. x  x  =  A )
119, 10sylib 120 . 2  |-  ( ph  ->  E. x  x  =  A )
12 fveq1 5304 . . 3  |-  ( F  =  ( x  e.  D  |->  B )  -> 
( F `  A
)  =  ( ( x  e.  D  |->  B ) `  A ) )
13 simpr 108 . . . . . . 7  |-  ( (
ph  /\  x  =  A )  ->  x  =  A )
1413fveq2d 5309 . . . . . 6  |-  ( (
ph  /\  x  =  A )  ->  (
( x  e.  D  |->  B ) `  x
)  =  ( ( x  e.  D  |->  B ) `  A ) )
157adantr 270 . . . . . . . 8  |-  ( (
ph  /\  x  =  A )  ->  A  e.  D )
1613, 15eqeltrd 2164 . . . . . . 7  |-  ( (
ph  /\  x  =  A )  ->  x  e.  D )
17 fvmptdf.2 . . . . . . 7  |-  ( (
ph  /\  x  =  A )  ->  B  e.  V )
18 eqid 2088 . . . . . . . 8  |-  ( x  e.  D  |->  B )  =  ( x  e.  D  |->  B )
1918fvmpt2 5386 . . . . . . 7  |-  ( ( x  e.  D  /\  B  e.  V )  ->  ( ( x  e.  D  |->  B ) `  x )  =  B )
2016, 17, 19syl2anc 403 . . . . . 6  |-  ( (
ph  /\  x  =  A )  ->  (
( x  e.  D  |->  B ) `  x
)  =  B )
2114, 20eqtr3d 2122 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  (
( x  e.  D  |->  B ) `  A
)  =  B )
2221eqeq2d 2099 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  (
( F `  A
)  =  ( ( x  e.  D  |->  B ) `  A )  <-> 
( F `  A
)  =  B ) )
23 fvmptdf.3 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  (
( F `  A
)  =  B  ->  ps ) )
2422, 23sylbid 148 . . 3  |-  ( (
ph  /\  x  =  A )  ->  (
( F `  A
)  =  ( ( x  e.  D  |->  B ) `  A )  ->  ps ) )
2512, 24syl5 32 . 2  |-  ( (
ph  /\  x  =  A )  ->  ( F  =  ( x  e.  D  |->  B )  ->  ps ) )
261, 6, 11, 25exlimdd 1800 1  |-  ( ph  ->  ( F  =  ( x  e.  D  |->  B )  ->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1289   F/wnf 1394   E.wex 1426    e. wcel 1438   F/_wnfc 2215   _Vcvv 2619    |-> cmpt 3899   ` cfv 5015
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-sbc 2841  df-csb 2934  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-iota 4980  df-fun 5017  df-fv 5023
This theorem is referenced by:  fvmptdv  5391
  Copyright terms: Public domain W3C validator