Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvmptdf | Unicode version |
Description: Alternate deduction version of fvmpt 5563, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.) |
Ref | Expression |
---|---|
fvmptdf.1 | |
fvmptdf.2 | |
fvmptdf.3 | |
fvmptdf.4 | |
fvmptdf.5 |
Ref | Expression |
---|---|
fvmptdf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1516 | . 2 | |
2 | fvmptdf.4 | . . . 4 | |
3 | nfmpt1 4075 | . . . 4 | |
4 | 2, 3 | nfeq 2316 | . . 3 |
5 | fvmptdf.5 | . . 3 | |
6 | 4, 5 | nfim 1560 | . 2 |
7 | fvmptdf.1 | . . . 4 | |
8 | elex 2737 | . . . 4 | |
9 | 7, 8 | syl 14 | . . 3 |
10 | isset 2732 | . . 3 | |
11 | 9, 10 | sylib 121 | . 2 |
12 | fveq1 5485 | . . 3 | |
13 | simpr 109 | . . . . . . 7 | |
14 | 13 | fveq2d 5490 | . . . . . 6 |
15 | 7 | adantr 274 | . . . . . . . 8 |
16 | 13, 15 | eqeltrd 2243 | . . . . . . 7 |
17 | fvmptdf.2 | . . . . . . 7 | |
18 | eqid 2165 | . . . . . . . 8 | |
19 | 18 | fvmpt2 5569 | . . . . . . 7 |
20 | 16, 17, 19 | syl2anc 409 | . . . . . 6 |
21 | 14, 20 | eqtr3d 2200 | . . . . 5 |
22 | 21 | eqeq2d 2177 | . . . 4 |
23 | fvmptdf.3 | . . . 4 | |
24 | 22, 23 | sylbid 149 | . . 3 |
25 | 12, 24 | syl5 32 | . 2 |
26 | 1, 6, 11, 25 | exlimdd 1860 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wnf 1448 wex 1480 wcel 2136 wnfc 2295 cvv 2726 cmpt 4043 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 |
This theorem is referenced by: fvmptdv 5574 |
Copyright terms: Public domain | W3C validator |