ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptdf Unicode version

Theorem fvmptdf 5581
Description: Alternate deduction version of fvmpt 5571, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypotheses
Ref Expression
fvmptdf.1  |-  ( ph  ->  A  e.  D )
fvmptdf.2  |-  ( (
ph  /\  x  =  A )  ->  B  e.  V )
fvmptdf.3  |-  ( (
ph  /\  x  =  A )  ->  (
( F `  A
)  =  B  ->  ps ) )
fvmptdf.4  |-  F/_ x F
fvmptdf.5  |-  F/ x ps
Assertion
Ref Expression
fvmptdf  |-  ( ph  ->  ( F  =  ( x  e.  D  |->  B )  ->  ps )
)
Distinct variable groups:    x, A    x, D    ph, x
Allowed substitution hints:    ps( x)    B( x)    F( x)    V( x)

Proof of Theorem fvmptdf
StepHypRef Expression
1 nfv 1521 . 2  |-  F/ x ph
2 fvmptdf.4 . . . 4  |-  F/_ x F
3 nfmpt1 4080 . . . 4  |-  F/_ x
( x  e.  D  |->  B )
42, 3nfeq 2320 . . 3  |-  F/ x  F  =  ( x  e.  D  |->  B )
5 fvmptdf.5 . . 3  |-  F/ x ps
64, 5nfim 1565 . 2  |-  F/ x
( F  =  ( x  e.  D  |->  B )  ->  ps )
7 fvmptdf.1 . . . 4  |-  ( ph  ->  A  e.  D )
8 elex 2741 . . . 4  |-  ( A  e.  D  ->  A  e.  _V )
97, 8syl 14 . . 3  |-  ( ph  ->  A  e.  _V )
10 isset 2736 . . 3  |-  ( A  e.  _V  <->  E. x  x  =  A )
119, 10sylib 121 . 2  |-  ( ph  ->  E. x  x  =  A )
12 fveq1 5493 . . 3  |-  ( F  =  ( x  e.  D  |->  B )  -> 
( F `  A
)  =  ( ( x  e.  D  |->  B ) `  A ) )
13 simpr 109 . . . . . . 7  |-  ( (
ph  /\  x  =  A )  ->  x  =  A )
1413fveq2d 5498 . . . . . 6  |-  ( (
ph  /\  x  =  A )  ->  (
( x  e.  D  |->  B ) `  x
)  =  ( ( x  e.  D  |->  B ) `  A ) )
157adantr 274 . . . . . . . 8  |-  ( (
ph  /\  x  =  A )  ->  A  e.  D )
1613, 15eqeltrd 2247 . . . . . . 7  |-  ( (
ph  /\  x  =  A )  ->  x  e.  D )
17 fvmptdf.2 . . . . . . 7  |-  ( (
ph  /\  x  =  A )  ->  B  e.  V )
18 eqid 2170 . . . . . . . 8  |-  ( x  e.  D  |->  B )  =  ( x  e.  D  |->  B )
1918fvmpt2 5577 . . . . . . 7  |-  ( ( x  e.  D  /\  B  e.  V )  ->  ( ( x  e.  D  |->  B ) `  x )  =  B )
2016, 17, 19syl2anc 409 . . . . . 6  |-  ( (
ph  /\  x  =  A )  ->  (
( x  e.  D  |->  B ) `  x
)  =  B )
2114, 20eqtr3d 2205 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  (
( x  e.  D  |->  B ) `  A
)  =  B )
2221eqeq2d 2182 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  (
( F `  A
)  =  ( ( x  e.  D  |->  B ) `  A )  <-> 
( F `  A
)  =  B ) )
23 fvmptdf.3 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  (
( F `  A
)  =  B  ->  ps ) )
2422, 23sylbid 149 . . 3  |-  ( (
ph  /\  x  =  A )  ->  (
( F `  A
)  =  ( ( x  e.  D  |->  B ) `  A )  ->  ps ) )
2512, 24syl5 32 . 2  |-  ( (
ph  /\  x  =  A )  ->  ( F  =  ( x  e.  D  |->  B )  ->  ps ) )
261, 6, 11, 25exlimdd 1865 1  |-  ( ph  ->  ( F  =  ( x  e.  D  |->  B )  ->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348   F/wnf 1453   E.wex 1485    e. wcel 2141   F/_wnfc 2299   _Vcvv 2730    |-> cmpt 4048   ` cfv 5196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-iota 5158  df-fun 5198  df-fv 5204
This theorem is referenced by:  fvmptdv  5582
  Copyright terms: Public domain W3C validator