ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemm Unicode version

Theorem ltexprlemm 7713
Description: Our constructed difference is inhabited. Lemma for ltexpri 7726. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlemm  |-  ( A 
<P  B  ->  ( E. q  e.  Q.  q  e.  ( 1st `  C
)  /\  E. r  e.  Q.  r  e.  ( 2nd `  C ) ) )
Distinct variable groups:    x, y, q, r, A    x, B, y, q, r    x, C, y, q, r

Proof of Theorem ltexprlemm
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ltrelpr 7618 . . . . . . . . 9  |-  <P  C_  ( P.  X.  P. )
21brel 4727 . . . . . . . 8  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
3 ltdfpr 7619 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  E. y  e.  Q.  ( y  e.  ( 2nd `  A
)  /\  y  e.  ( 1st `  B ) ) ) )
43biimpd 144 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  ->  E. y  e.  Q.  ( y  e.  ( 2nd `  A )  /\  y  e.  ( 1st `  B ) ) ) )
52, 4mpcom 36 . . . . . . 7  |-  ( A 
<P  B  ->  E. y  e.  Q.  ( y  e.  ( 2nd `  A
)  /\  y  e.  ( 1st `  B ) ) )
6 simprrl 539 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  ( y  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  y  e.  ( 1st `  B ) ) ) )  -> 
y  e.  ( 2nd `  A ) )
72simprd 114 . . . . . . . . . . . . 13  |-  ( A 
<P  B  ->  B  e. 
P. )
8 prop 7588 . . . . . . . . . . . . . . . . . 18  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
9 prnmaxl 7601 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  y  e.  ( 1st `  B ) )  ->  E. w  e.  ( 1st `  B ) y 
<Q  w )
108, 9sylan 283 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  P.  /\  y  e.  ( 1st `  B ) )  ->  E. w  e.  ( 1st `  B ) y 
<Q  w )
11 ltexnqi 7522 . . . . . . . . . . . . . . . . . 18  |-  ( y 
<Q  w  ->  E. q  e.  Q.  ( y  +Q  q )  =  w )
1211reximi 2603 . . . . . . . . . . . . . . . . 17  |-  ( E. w  e.  ( 1st `  B ) y  <Q  w  ->  E. w  e.  ( 1st `  B ) E. q  e.  Q.  ( y  +Q  q
)  =  w )
1310, 12syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  P.  /\  y  e.  ( 1st `  B ) )  ->  E. w  e.  ( 1st `  B ) E. q  e.  Q.  (
y  +Q  q )  =  w )
14 df-rex 2490 . . . . . . . . . . . . . . . 16  |-  ( E. w  e.  ( 1st `  B ) E. q  e.  Q.  ( y  +Q  q )  =  w  <->  E. w ( w  e.  ( 1st `  B
)  /\  E. q  e.  Q.  ( y  +Q  q )  =  w ) )
1513, 14sylib 122 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  P.  /\  y  e.  ( 1st `  B ) )  ->  E. w ( w  e.  ( 1st `  B
)  /\  E. q  e.  Q.  ( y  +Q  q )  =  w ) )
16 r19.42v 2663 . . . . . . . . . . . . . . . 16  |-  ( E. q  e.  Q.  (
w  e.  ( 1st `  B )  /\  (
y  +Q  q )  =  w )  <->  ( w  e.  ( 1st `  B
)  /\  E. q  e.  Q.  ( y  +Q  q )  =  w ) )
1716exbii 1628 . . . . . . . . . . . . . . 15  |-  ( E. w E. q  e. 
Q.  ( w  e.  ( 1st `  B
)  /\  ( y  +Q  q )  =  w )  <->  E. w ( w  e.  ( 1st `  B
)  /\  E. q  e.  Q.  ( y  +Q  q )  =  w ) )
1815, 17sylibr 134 . . . . . . . . . . . . . 14  |-  ( ( B  e.  P.  /\  y  e.  ( 1st `  B ) )  ->  E. w E. q  e. 
Q.  ( w  e.  ( 1st `  B
)  /\  ( y  +Q  q )  =  w ) )
19 eleq1 2268 . . . . . . . . . . . . . . . . 17  |-  ( ( y  +Q  q )  =  w  ->  (
( y  +Q  q
)  e.  ( 1st `  B )  <->  w  e.  ( 1st `  B ) ) )
2019biimparc 299 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  ( 1st `  B )  /\  (
y  +Q  q )  =  w )  -> 
( y  +Q  q
)  e.  ( 1st `  B ) )
2120reximi 2603 . . . . . . . . . . . . . . 15  |-  ( E. q  e.  Q.  (
w  e.  ( 1st `  B )  /\  (
y  +Q  q )  =  w )  ->  E. q  e.  Q.  ( y  +Q  q
)  e.  ( 1st `  B ) )
2221exlimiv 1621 . . . . . . . . . . . . . 14  |-  ( E. w E. q  e. 
Q.  ( w  e.  ( 1st `  B
)  /\  ( y  +Q  q )  =  w )  ->  E. q  e.  Q.  ( y  +Q  q )  e.  ( 1st `  B ) )
2318, 22syl 14 . . . . . . . . . . . . 13  |-  ( ( B  e.  P.  /\  y  e.  ( 1st `  B ) )  ->  E. q  e.  Q.  ( y  +Q  q
)  e.  ( 1st `  B ) )
247, 23sylan 283 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  y  e.  ( 1st `  B ) )  ->  E. q  e.  Q.  ( y  +Q  q
)  e.  ( 1st `  B ) )
2524adantrl 478 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  ( y  e.  ( 2nd `  A )  /\  y  e.  ( 1st `  B ) ) )  ->  E. q  e.  Q.  ( y  +Q  q )  e.  ( 1st `  B ) )
2625adantrl 478 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  ( y  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  y  e.  ( 1st `  B ) ) ) )  ->  E. q  e.  Q.  ( y  +Q  q
)  e.  ( 1st `  B ) )
276, 26jca 306 . . . . . . . . 9  |-  ( ( A  <P  B  /\  ( y  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  y  e.  ( 1st `  B ) ) ) )  -> 
( y  e.  ( 2nd `  A )  /\  E. q  e. 
Q.  ( y  +Q  q )  e.  ( 1st `  B ) ) )
2827expr 375 . . . . . . . 8  |-  ( ( A  <P  B  /\  y  e.  Q. )  ->  ( ( y  e.  ( 2nd `  A
)  /\  y  e.  ( 1st `  B ) )  ->  ( y  e.  ( 2nd `  A
)  /\  E. q  e.  Q.  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
2928reximdva 2608 . . . . . . 7  |-  ( A 
<P  B  ->  ( E. y  e.  Q.  (
y  e.  ( 2nd `  A )  /\  y  e.  ( 1st `  B
) )  ->  E. y  e.  Q.  ( y  e.  ( 2nd `  A
)  /\  E. q  e.  Q.  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
305, 29mpd 13 . . . . . 6  |-  ( A 
<P  B  ->  E. y  e.  Q.  ( y  e.  ( 2nd `  A
)  /\  E. q  e.  Q.  ( y  +Q  q )  e.  ( 1st `  B ) ) )
31 r19.42v 2663 . . . . . . 7  |-  ( E. q  e.  Q.  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) )  <->  ( y  e.  ( 2nd `  A
)  /\  E. q  e.  Q.  ( y  +Q  q )  e.  ( 1st `  B ) ) )
3231rexbii 2513 . . . . . 6  |-  ( E. y  e.  Q.  E. q  e.  Q.  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) )  <->  E. y  e.  Q.  ( y  e.  ( 2nd `  A
)  /\  E. q  e.  Q.  ( y  +Q  q )  e.  ( 1st `  B ) ) )
3330, 32sylibr 134 . . . . 5  |-  ( A 
<P  B  ->  E. y  e.  Q.  E. q  e. 
Q.  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )
34 rexcom 2670 . . . . 5  |-  ( E. y  e.  Q.  E. q  e.  Q.  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) )  <->  E. q  e.  Q.  E. y  e. 
Q.  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )
3533, 34sylib 122 . . . 4  |-  ( A 
<P  B  ->  E. q  e.  Q.  E. y  e. 
Q.  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )
362simpld 112 . . . . . . . . . . . 12  |-  ( A 
<P  B  ->  A  e. 
P. )
37 prop 7588 . . . . . . . . . . . . 13  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
38 elprnqu 7595 . . . . . . . . . . . . 13  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
3937, 38sylan 283 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
4036, 39sylan 283 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
4140ex 115 . . . . . . . . . 10  |-  ( A 
<P  B  ->  ( y  e.  ( 2nd `  A
)  ->  y  e.  Q. ) )
4241pm4.71rd 394 . . . . . . . . 9  |-  ( A 
<P  B  ->  ( y  e.  ( 2nd `  A
)  <->  ( y  e. 
Q.  /\  y  e.  ( 2nd `  A ) ) ) )
4342anbi1d 465 . . . . . . . 8  |-  ( A 
<P  B  ->  ( ( y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) )  <->  ( (
y  e.  Q.  /\  y  e.  ( 2nd `  A ) )  /\  ( y  +Q  q
)  e.  ( 1st `  B ) ) ) )
44 anass 401 . . . . . . . 8  |-  ( ( ( y  e.  Q.  /\  y  e.  ( 2nd `  A ) )  /\  ( y  +Q  q
)  e.  ( 1st `  B ) )  <->  ( y  e.  Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
4543, 44bitrdi 196 . . . . . . 7  |-  ( A 
<P  B  ->  ( ( y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) )  <->  ( y  e.  Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) ) )
4645exbidv 1848 . . . . . 6  |-  ( A 
<P  B  ->  ( E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  <->  E. y ( y  e.  Q.  /\  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) ) ) ) )
4746rexbidv 2507 . . . . 5  |-  ( A 
<P  B  ->  ( E. q  e.  Q.  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  <->  E. q  e.  Q.  E. y ( y  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) ) )
48 df-rex 2490 . . . . . 6  |-  ( E. y  e.  Q.  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) )  <->  E. y
( y  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
4948rexbii 2513 . . . . 5  |-  ( E. q  e.  Q.  E. y  e.  Q.  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) )  <->  E. q  e.  Q.  E. y ( y  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
5047, 49bitr4di 198 . . . 4  |-  ( A 
<P  B  ->  ( E. q  e.  Q.  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  <->  E. q  e.  Q.  E. y  e.  Q.  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) ) ) )
5135, 50mpbird 167 . . 3  |-  ( A 
<P  B  ->  E. q  e.  Q.  E. y ( y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) ) )
52 ltexprlem.1 . . . . . 6  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
5352ltexprlemell 7711 . . . . 5  |-  ( q  e.  ( 1st `  C
)  <->  ( q  e. 
Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
5453rexbii 2513 . . . 4  |-  ( E. q  e.  Q.  q  e.  ( 1st `  C
)  <->  E. q  e.  Q.  ( q  e.  Q.  /\ 
E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
55 ssid 3213 . . . . 5  |-  Q.  C_  Q.
56 rexss 3260 . . . . 5  |-  ( Q.  C_  Q.  ->  ( E. q  e.  Q.  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  <->  E. q  e.  Q.  ( q  e.  Q.  /\ 
E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) ) )
5755, 56ax-mp 5 . . . 4  |-  ( E. q  e.  Q.  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  <->  E. q  e.  Q.  ( q  e.  Q.  /\ 
E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
5854, 57bitr4i 187 . . 3  |-  ( E. q  e.  Q.  q  e.  ( 1st `  C
)  <->  E. q  e.  Q.  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )
5951, 58sylibr 134 . 2  |-  ( A 
<P  B  ->  E. q  e.  Q.  q  e.  ( 1st `  C ) )
60 nfv 1551 . . 3  |-  F/ r  A  <P  B
61 nfre1 2549 . . 3  |-  F/ r E. r  e.  Q.  r  e.  ( 2nd `  C )
62 prmu 7591 . . . . 5  |-  ( <.
( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  ->  E. r  e.  Q.  r  e.  ( 2nd `  B ) )
63 rexex 2552 . . . . 5  |-  ( E. r  e.  Q.  r  e.  ( 2nd `  B
)  ->  E. r 
r  e.  ( 2nd `  B ) )
6462, 63syl 14 . . . 4  |-  ( <.
( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  ->  E. r  r  e.  ( 2nd `  B
) )
657, 8, 643syl 17 . . 3  |-  ( A 
<P  B  ->  E. r 
r  e.  ( 2nd `  B ) )
66 elprnqu 7595 . . . . . . 7  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  r  e.  ( 2nd `  B ) )  -> 
r  e.  Q. )
678, 66sylan 283 . . . . . 6  |-  ( ( B  e.  P.  /\  r  e.  ( 2nd `  B ) )  -> 
r  e.  Q. )
687, 67sylan 283 . . . . 5  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B ) )  -> 
r  e.  Q. )
69 prml 7590 . . . . . . . . 9  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  ->  E. y  e.  Q.  y  e.  ( 1st `  A ) )
7037, 69syl 14 . . . . . . . 8  |-  ( A  e.  P.  ->  E. y  e.  Q.  y  e.  ( 1st `  A ) )
71 rexex 2552 . . . . . . . 8  |-  ( E. y  e.  Q.  y  e.  ( 1st `  A
)  ->  E. y 
y  e.  ( 1st `  A ) )
7236, 70, 713syl 17 . . . . . . 7  |-  ( A 
<P  B  ->  E. y 
y  e.  ( 1st `  A ) )
7372adantr 276 . . . . . 6  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B ) )  ->  E. y  y  e.  ( 1st `  A ) )
74683adant3 1020 . . . . . . . . 9  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  r  e.  Q. )
75 simp3 1002 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  y  e.  ( 1st `  A
) )
76 elprnql 7594 . . . . . . . . . . . . . . 15  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
7737, 76sylan 283 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
7836, 77sylan 283 . . . . . . . . . . . . 13  |-  ( ( A  <P  B  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
79783adant2 1019 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  y  e.  Q. )
80 addcomnqg 7494 . . . . . . . . . . . 12  |-  ( ( r  e.  Q.  /\  y  e.  Q. )  ->  ( r  +Q  y
)  =  ( y  +Q  r ) )
8174, 79, 80syl2anc 411 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  (
r  +Q  y )  =  ( y  +Q  r ) )
82 ltaddnq 7520 . . . . . . . . . . . . 13  |-  ( ( r  e.  Q.  /\  y  e.  Q. )  ->  r  <Q  ( r  +Q  y ) )
8374, 79, 82syl2anc 411 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  r  <Q  ( r  +Q  y
) )
84 prcunqu 7598 . . . . . . . . . . . . . . 15  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  r  e.  ( 2nd `  B ) )  -> 
( r  <Q  (
r  +Q  y )  ->  ( r  +Q  y )  e.  ( 2nd `  B ) ) )
858, 84sylan 283 . . . . . . . . . . . . . 14  |-  ( ( B  e.  P.  /\  r  e.  ( 2nd `  B ) )  -> 
( r  <Q  (
r  +Q  y )  ->  ( r  +Q  y )  e.  ( 2nd `  B ) ) )
867, 85sylan 283 . . . . . . . . . . . . 13  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B ) )  -> 
( r  <Q  (
r  +Q  y )  ->  ( r  +Q  y )  e.  ( 2nd `  B ) ) )
87863adant3 1020 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  (
r  <Q  ( r  +Q  y )  ->  (
r  +Q  y )  e.  ( 2nd `  B
) ) )
8883, 87mpd 13 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  (
r  +Q  y )  e.  ( 2nd `  B
) )
8981, 88eqeltrrd 2283 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  (
y  +Q  r )  e.  ( 2nd `  B
) )
90 19.8a 1613 . . . . . . . . . 10  |-  ( ( y  e.  ( 1st `  A )  /\  (
y  +Q  r )  e.  ( 2nd `  B
) )  ->  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) )
9175, 89, 90syl2anc 411 . . . . . . . . 9  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) )
9274, 91jca 306 . . . . . . . 8  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  (
r  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
9352ltexprlemelu 7712 . . . . . . . 8  |-  ( r  e.  ( 2nd `  C
)  <->  ( r  e. 
Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
9492, 93sylibr 134 . . . . . . 7  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  r  e.  ( 2nd `  C
) )
95943expa 1206 . . . . . 6  |-  ( ( ( A  <P  B  /\  r  e.  ( 2nd `  B ) )  /\  y  e.  ( 1st `  A ) )  -> 
r  e.  ( 2nd `  C ) )
9673, 95exlimddv 1922 . . . . 5  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B ) )  -> 
r  e.  ( 2nd `  C ) )
97 19.8a 1613 . . . . 5  |-  ( ( r  e.  Q.  /\  r  e.  ( 2nd `  C ) )  ->  E. r ( r  e. 
Q.  /\  r  e.  ( 2nd `  C ) ) )
9868, 96, 97syl2anc 411 . . . 4  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B ) )  ->  E. r ( r  e. 
Q.  /\  r  e.  ( 2nd `  C ) ) )
99 df-rex 2490 . . . 4  |-  ( E. r  e.  Q.  r  e.  ( 2nd `  C
)  <->  E. r ( r  e.  Q.  /\  r  e.  ( 2nd `  C
) ) )
10098, 99sylibr 134 . . 3  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B ) )  ->  E. r  e.  Q.  r  e.  ( 2nd `  C ) )
10160, 61, 65, 100exlimdd 1895 . 2  |-  ( A 
<P  B  ->  E. r  e.  Q.  r  e.  ( 2nd `  C ) )
10259, 101jca 306 1  |-  ( A 
<P  B  ->  ( E. q  e.  Q.  q  e.  ( 1st `  C
)  /\  E. r  e.  Q.  r  e.  ( 2nd `  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373   E.wex 1515    e. wcel 2176   E.wrex 2485   {crab 2488    C_ wss 3166   <.cop 3636   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   1stc1st 6224   2ndc2nd 6225   Q.cnq 7393    +Q cplq 7395    <Q cltq 7398   P.cnp 7404    <P cltp 7408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-eprel 4336  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-1o 6502  df-oadd 6506  df-omul 6507  df-er 6620  df-ec 6622  df-qs 6626  df-ni 7417  df-pli 7418  df-mi 7419  df-lti 7420  df-plpq 7457  df-mpq 7458  df-enq 7460  df-nqqs 7461  df-plqqs 7462  df-mqqs 7463  df-1nqqs 7464  df-ltnqqs 7466  df-inp 7579  df-iltp 7583
This theorem is referenced by:  ltexprlempr  7721
  Copyright terms: Public domain W3C validator