| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovmpodf | Unicode version | ||
| Description: Alternate deduction version of ovmpo 6058, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.) |
| Ref | Expression |
|---|---|
| ovmpodf.1 |
|
| ovmpodf.2 |
|
| ovmpodf.3 |
|
| ovmpodf.4 |
|
| ovmpodf.5 |
|
| ovmpodf.6 |
|
| ovmpodf.7 |
|
| ovmpodf.8 |
|
| Ref | Expression |
|---|---|
| ovmpodf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 |
. 2
| |
| 2 | ovmpodf.5 |
. . . 4
| |
| 3 | nfmpo1 5989 |
. . . 4
| |
| 4 | 2, 3 | nfeq 2347 |
. . 3
|
| 5 | ovmpodf.6 |
. . 3
| |
| 6 | 4, 5 | nfim 1586 |
. 2
|
| 7 | ovmpodf.1 |
. . . 4
| |
| 8 | elex 2774 |
. . . 4
| |
| 9 | 7, 8 | syl 14 |
. . 3
|
| 10 | isset 2769 |
. . 3
| |
| 11 | 9, 10 | sylib 122 |
. 2
|
| 12 | ovmpodf.2 |
. . . . 5
| |
| 13 | elex 2774 |
. . . . 5
| |
| 14 | 12, 13 | syl 14 |
. . . 4
|
| 15 | isset 2769 |
. . . 4
| |
| 16 | 14, 15 | sylib 122 |
. . 3
|
| 17 | nfv 1542 |
. . . 4
| |
| 18 | ovmpodf.7 |
. . . . . 6
| |
| 19 | nfmpo2 5990 |
. . . . . 6
| |
| 20 | 18, 19 | nfeq 2347 |
. . . . 5
|
| 21 | ovmpodf.8 |
. . . . 5
| |
| 22 | 20, 21 | nfim 1586 |
. . . 4
|
| 23 | oveq 5928 |
. . . . . 6
| |
| 24 | simprl 529 |
. . . . . . . . . 10
| |
| 25 | simprr 531 |
. . . . . . . . . 10
| |
| 26 | 24, 25 | oveq12d 5940 |
. . . . . . . . 9
|
| 27 | 7 | adantr 276 |
. . . . . . . . . . 11
|
| 28 | 24, 27 | eqeltrd 2273 |
. . . . . . . . . 10
|
| 29 | 12 | adantrr 479 |
. . . . . . . . . . 11
|
| 30 | 25, 29 | eqeltrd 2273 |
. . . . . . . . . 10
|
| 31 | ovmpodf.3 |
. . . . . . . . . 10
| |
| 32 | eqid 2196 |
. . . . . . . . . . 11
| |
| 33 | 32 | ovmpt4g 6045 |
. . . . . . . . . 10
|
| 34 | 28, 30, 31, 33 | syl3anc 1249 |
. . . . . . . . 9
|
| 35 | 26, 34 | eqtr3d 2231 |
. . . . . . . 8
|
| 36 | 35 | eqeq2d 2208 |
. . . . . . 7
|
| 37 | ovmpodf.4 |
. . . . . . 7
| |
| 38 | 36, 37 | sylbid 150 |
. . . . . 6
|
| 39 | 23, 38 | syl5 32 |
. . . . 5
|
| 40 | 39 | expr 375 |
. . . 4
|
| 41 | 17, 22, 40 | exlimd 1611 |
. . 3
|
| 42 | 16, 41 | mpd 13 |
. 2
|
| 43 | 1, 6, 11, 42 | exlimdd 1886 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 |
| This theorem is referenced by: ovmpodv 6055 ovmpodv2 6056 |
| Copyright terms: Public domain | W3C validator |