| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovmpodf | Unicode version | ||
| Description: Alternate deduction version of ovmpo 6140, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.) |
| Ref | Expression |
|---|---|
| ovmpodf.1 |
|
| ovmpodf.2 |
|
| ovmpodf.3 |
|
| ovmpodf.4 |
|
| ovmpodf.5 |
|
| ovmpodf.6 |
|
| ovmpodf.7 |
|
| ovmpodf.8 |
|
| Ref | Expression |
|---|---|
| ovmpodf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 |
. 2
| |
| 2 | ovmpodf.5 |
. . . 4
| |
| 3 | nfmpo1 6071 |
. . . 4
| |
| 4 | 2, 3 | nfeq 2380 |
. . 3
|
| 5 | ovmpodf.6 |
. . 3
| |
| 6 | 4, 5 | nfim 1618 |
. 2
|
| 7 | ovmpodf.1 |
. . . 4
| |
| 8 | elex 2811 |
. . . 4
| |
| 9 | 7, 8 | syl 14 |
. . 3
|
| 10 | isset 2806 |
. . 3
| |
| 11 | 9, 10 | sylib 122 |
. 2
|
| 12 | ovmpodf.2 |
. . . . 5
| |
| 13 | elex 2811 |
. . . . 5
| |
| 14 | 12, 13 | syl 14 |
. . . 4
|
| 15 | isset 2806 |
. . . 4
| |
| 16 | 14, 15 | sylib 122 |
. . 3
|
| 17 | nfv 1574 |
. . . 4
| |
| 18 | ovmpodf.7 |
. . . . . 6
| |
| 19 | nfmpo2 6072 |
. . . . . 6
| |
| 20 | 18, 19 | nfeq 2380 |
. . . . 5
|
| 21 | ovmpodf.8 |
. . . . 5
| |
| 22 | 20, 21 | nfim 1618 |
. . . 4
|
| 23 | oveq 6007 |
. . . . . 6
| |
| 24 | simprl 529 |
. . . . . . . . . 10
| |
| 25 | simprr 531 |
. . . . . . . . . 10
| |
| 26 | 24, 25 | oveq12d 6019 |
. . . . . . . . 9
|
| 27 | 7 | adantr 276 |
. . . . . . . . . . 11
|
| 28 | 24, 27 | eqeltrd 2306 |
. . . . . . . . . 10
|
| 29 | 12 | adantrr 479 |
. . . . . . . . . . 11
|
| 30 | 25, 29 | eqeltrd 2306 |
. . . . . . . . . 10
|
| 31 | ovmpodf.3 |
. . . . . . . . . 10
| |
| 32 | eqid 2229 |
. . . . . . . . . . 11
| |
| 33 | 32 | ovmpt4g 6127 |
. . . . . . . . . 10
|
| 34 | 28, 30, 31, 33 | syl3anc 1271 |
. . . . . . . . 9
|
| 35 | 26, 34 | eqtr3d 2264 |
. . . . . . . 8
|
| 36 | 35 | eqeq2d 2241 |
. . . . . . 7
|
| 37 | ovmpodf.4 |
. . . . . . 7
| |
| 38 | 36, 37 | sylbid 150 |
. . . . . 6
|
| 39 | 23, 38 | syl5 32 |
. . . . 5
|
| 40 | 39 | expr 375 |
. . . 4
|
| 41 | 17, 22, 40 | exlimd 1643 |
. . 3
|
| 42 | 16, 41 | mpd 13 |
. 2
|
| 43 | 1, 6, 11, 42 | exlimdd 1918 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 |
| This theorem is referenced by: ovmpodv 6137 ovmpodv2 6138 |
| Copyright terms: Public domain | W3C validator |