Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ovmpodf | Unicode version |
Description: Alternate deduction version of ovmpo 6000, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.) |
Ref | Expression |
---|---|
ovmpodf.1 | |
ovmpodf.2 | |
ovmpodf.3 | |
ovmpodf.4 | |
ovmpodf.5 | |
ovmpodf.6 | |
ovmpodf.7 | |
ovmpodf.8 |
Ref | Expression |
---|---|
ovmpodf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1526 | . 2 | |
2 | ovmpodf.5 | . . . 4 | |
3 | nfmpo1 5932 | . . . 4 | |
4 | 2, 3 | nfeq 2325 | . . 3 |
5 | ovmpodf.6 | . . 3 | |
6 | 4, 5 | nfim 1570 | . 2 |
7 | ovmpodf.1 | . . . 4 | |
8 | elex 2746 | . . . 4 | |
9 | 7, 8 | syl 14 | . . 3 |
10 | isset 2741 | . . 3 | |
11 | 9, 10 | sylib 122 | . 2 |
12 | ovmpodf.2 | . . . . 5 | |
13 | elex 2746 | . . . . 5 | |
14 | 12, 13 | syl 14 | . . . 4 |
15 | isset 2741 | . . . 4 | |
16 | 14, 15 | sylib 122 | . . 3 |
17 | nfv 1526 | . . . 4 | |
18 | ovmpodf.7 | . . . . . 6 | |
19 | nfmpo2 5933 | . . . . . 6 | |
20 | 18, 19 | nfeq 2325 | . . . . 5 |
21 | ovmpodf.8 | . . . . 5 | |
22 | 20, 21 | nfim 1570 | . . . 4 |
23 | oveq 5871 | . . . . . 6 | |
24 | simprl 529 | . . . . . . . . . 10 | |
25 | simprr 531 | . . . . . . . . . 10 | |
26 | 24, 25 | oveq12d 5883 | . . . . . . . . 9 |
27 | 7 | adantr 276 | . . . . . . . . . . 11 |
28 | 24, 27 | eqeltrd 2252 | . . . . . . . . . 10 |
29 | 12 | adantrr 479 | . . . . . . . . . . 11 |
30 | 25, 29 | eqeltrd 2252 | . . . . . . . . . 10 |
31 | ovmpodf.3 | . . . . . . . . . 10 | |
32 | eqid 2175 | . . . . . . . . . . 11 | |
33 | 32 | ovmpt4g 5987 | . . . . . . . . . 10 |
34 | 28, 30, 31, 33 | syl3anc 1238 | . . . . . . . . 9 |
35 | 26, 34 | eqtr3d 2210 | . . . . . . . 8 |
36 | 35 | eqeq2d 2187 | . . . . . . 7 |
37 | ovmpodf.4 | . . . . . . 7 | |
38 | 36, 37 | sylbid 150 | . . . . . 6 |
39 | 23, 38 | syl5 32 | . . . . 5 |
40 | 39 | expr 375 | . . . 4 |
41 | 17, 22, 40 | exlimd 1595 | . . 3 |
42 | 16, 41 | mpd 13 | . 2 |
43 | 1, 6, 11, 42 | exlimdd 1870 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wceq 1353 wnf 1458 wex 1490 wcel 2146 wnfc 2304 cvv 2735 (class class class)co 5865 cmpo 5867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-setind 4530 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 |
This theorem is referenced by: ovmpodv 5997 ovmpodv2 5998 |
Copyright terms: Public domain | W3C validator |