Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ovmpodf | Unicode version |
Description: Alternate deduction version of ovmpo 5988, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.) |
Ref | Expression |
---|---|
ovmpodf.1 | |
ovmpodf.2 | |
ovmpodf.3 | |
ovmpodf.4 | |
ovmpodf.5 | |
ovmpodf.6 | |
ovmpodf.7 | |
ovmpodf.8 |
Ref | Expression |
---|---|
ovmpodf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1521 | . 2 | |
2 | ovmpodf.5 | . . . 4 | |
3 | nfmpo1 5920 | . . . 4 | |
4 | 2, 3 | nfeq 2320 | . . 3 |
5 | ovmpodf.6 | . . 3 | |
6 | 4, 5 | nfim 1565 | . 2 |
7 | ovmpodf.1 | . . . 4 | |
8 | elex 2741 | . . . 4 | |
9 | 7, 8 | syl 14 | . . 3 |
10 | isset 2736 | . . 3 | |
11 | 9, 10 | sylib 121 | . 2 |
12 | ovmpodf.2 | . . . . 5 | |
13 | elex 2741 | . . . . 5 | |
14 | 12, 13 | syl 14 | . . . 4 |
15 | isset 2736 | . . . 4 | |
16 | 14, 15 | sylib 121 | . . 3 |
17 | nfv 1521 | . . . 4 | |
18 | ovmpodf.7 | . . . . . 6 | |
19 | nfmpo2 5921 | . . . . . 6 | |
20 | 18, 19 | nfeq 2320 | . . . . 5 |
21 | ovmpodf.8 | . . . . 5 | |
22 | 20, 21 | nfim 1565 | . . . 4 |
23 | oveq 5859 | . . . . . 6 | |
24 | simprl 526 | . . . . . . . . . 10 | |
25 | simprr 527 | . . . . . . . . . 10 | |
26 | 24, 25 | oveq12d 5871 | . . . . . . . . 9 |
27 | 7 | adantr 274 | . . . . . . . . . . 11 |
28 | 24, 27 | eqeltrd 2247 | . . . . . . . . . 10 |
29 | 12 | adantrr 476 | . . . . . . . . . . 11 |
30 | 25, 29 | eqeltrd 2247 | . . . . . . . . . 10 |
31 | ovmpodf.3 | . . . . . . . . . 10 | |
32 | eqid 2170 | . . . . . . . . . . 11 | |
33 | 32 | ovmpt4g 5975 | . . . . . . . . . 10 |
34 | 28, 30, 31, 33 | syl3anc 1233 | . . . . . . . . 9 |
35 | 26, 34 | eqtr3d 2205 | . . . . . . . 8 |
36 | 35 | eqeq2d 2182 | . . . . . . 7 |
37 | ovmpodf.4 | . . . . . . 7 | |
38 | 36, 37 | sylbid 149 | . . . . . 6 |
39 | 23, 38 | syl5 32 | . . . . 5 |
40 | 39 | expr 373 | . . . 4 |
41 | 17, 22, 40 | exlimd 1590 | . . 3 |
42 | 16, 41 | mpd 13 | . 2 |
43 | 1, 6, 11, 42 | exlimdd 1865 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wnf 1453 wex 1485 wcel 2141 wnfc 2299 cvv 2730 (class class class)co 5853 cmpo 5855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 |
This theorem is referenced by: ovmpodv 5985 ovmpodv2 5986 |
Copyright terms: Public domain | W3C validator |