ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpodf Unicode version

Theorem ovmpodf 6006
Description: Alternate deduction version of ovmpo 6010, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypotheses
Ref Expression
ovmpodf.1  |-  ( ph  ->  A  e.  C )
ovmpodf.2  |-  ( (
ph  /\  x  =  A )  ->  B  e.  D )
ovmpodf.3  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  e.  V )
ovmpodf.4  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  -> 
( ( A F B )  =  R  ->  ps ) )
ovmpodf.5  |-  F/_ x F
ovmpodf.6  |-  F/ x ps
ovmpodf.7  |-  F/_ y F
ovmpodf.8  |-  F/ y ps
Assertion
Ref Expression
ovmpodf  |-  ( ph  ->  ( F  =  ( x  e.  C , 
y  e.  D  |->  R )  ->  ps )
)
Distinct variable groups:    x, y, A   
y, B    ph, x, y
Allowed substitution hints:    ps( x, y)    B( x)    C( x, y)    D( x, y)    R( x, y)    F( x, y)    V( x, y)

Proof of Theorem ovmpodf
StepHypRef Expression
1 nfv 1528 . 2  |-  F/ x ph
2 ovmpodf.5 . . . 4  |-  F/_ x F
3 nfmpo1 5942 . . . 4  |-  F/_ x
( x  e.  C ,  y  e.  D  |->  R )
42, 3nfeq 2327 . . 3  |-  F/ x  F  =  ( x  e.  C ,  y  e.  D  |->  R )
5 ovmpodf.6 . . 3  |-  F/ x ps
64, 5nfim 1572 . 2  |-  F/ x
( F  =  ( x  e.  C , 
y  e.  D  |->  R )  ->  ps )
7 ovmpodf.1 . . . 4  |-  ( ph  ->  A  e.  C )
8 elex 2749 . . . 4  |-  ( A  e.  C  ->  A  e.  _V )
97, 8syl 14 . . 3  |-  ( ph  ->  A  e.  _V )
10 isset 2744 . . 3  |-  ( A  e.  _V  <->  E. x  x  =  A )
119, 10sylib 122 . 2  |-  ( ph  ->  E. x  x  =  A )
12 ovmpodf.2 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  B  e.  D )
13 elex 2749 . . . . 5  |-  ( B  e.  D  ->  B  e.  _V )
1412, 13syl 14 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  B  e.  _V )
15 isset 2744 . . . 4  |-  ( B  e.  _V  <->  E. y 
y  =  B )
1614, 15sylib 122 . . 3  |-  ( (
ph  /\  x  =  A )  ->  E. y 
y  =  B )
17 nfv 1528 . . . 4  |-  F/ y ( ph  /\  x  =  A )
18 ovmpodf.7 . . . . . 6  |-  F/_ y F
19 nfmpo2 5943 . . . . . 6  |-  F/_ y
( x  e.  C ,  y  e.  D  |->  R )
2018, 19nfeq 2327 . . . . 5  |-  F/ y  F  =  ( x  e.  C ,  y  e.  D  |->  R )
21 ovmpodf.8 . . . . 5  |-  F/ y ps
2220, 21nfim 1572 . . . 4  |-  F/ y ( F  =  ( x  e.  C , 
y  e.  D  |->  R )  ->  ps )
23 oveq 5881 . . . . . 6  |-  ( F  =  ( x  e.  C ,  y  e.  D  |->  R )  -> 
( A F B )  =  ( A ( x  e.  C ,  y  e.  D  |->  R ) B ) )
24 simprl 529 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  x  =  A )
25 simprr 531 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  -> 
y  =  B )
2624, 25oveq12d 5893 . . . . . . . . 9  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  -> 
( x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  ( A ( x  e.  C ,  y  e.  D  |->  R ) B ) )
277adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  A  e.  C )
2824, 27eqeltrd 2254 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  x  e.  C )
2912adantrr 479 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  B  e.  D )
3025, 29eqeltrd 2254 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  -> 
y  e.  D )
31 ovmpodf.3 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  e.  V )
32 eqid 2177 . . . . . . . . . . 11  |-  ( x  e.  C ,  y  e.  D  |->  R )  =  ( x  e.  C ,  y  e.  D  |->  R )
3332ovmpt4g 5997 . . . . . . . . . 10  |-  ( ( x  e.  C  /\  y  e.  D  /\  R  e.  V )  ->  ( x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R )
3428, 30, 31, 33syl3anc 1238 . . . . . . . . 9  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  -> 
( x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R )
3526, 34eqtr3d 2212 . . . . . . . 8  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  -> 
( A ( x  e.  C ,  y  e.  D  |->  R ) B )  =  R )
3635eqeq2d 2189 . . . . . . 7  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  -> 
( ( A F B )  =  ( A ( x  e.  C ,  y  e.  D  |->  R ) B )  <->  ( A F B )  =  R ) )
37 ovmpodf.4 . . . . . . 7  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  -> 
( ( A F B )  =  R  ->  ps ) )
3836, 37sylbid 150 . . . . . 6  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  -> 
( ( A F B )  =  ( A ( x  e.  C ,  y  e.  D  |->  R ) B )  ->  ps )
)
3923, 38syl5 32 . . . . 5  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  -> 
( F  =  ( x  e.  C , 
y  e.  D  |->  R )  ->  ps )
)
4039expr 375 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  (
y  =  B  -> 
( F  =  ( x  e.  C , 
y  e.  D  |->  R )  ->  ps )
) )
4117, 22, 40exlimd 1597 . . 3  |-  ( (
ph  /\  x  =  A )  ->  ( E. y  y  =  B  ->  ( F  =  ( x  e.  C ,  y  e.  D  |->  R )  ->  ps ) ) )
4216, 41mpd 13 . 2  |-  ( (
ph  /\  x  =  A )  ->  ( F  =  ( x  e.  C ,  y  e.  D  |->  R )  ->  ps ) )
431, 6, 11, 42exlimdd 1872 1  |-  ( ph  ->  ( F  =  ( x  e.  C , 
y  e.  D  |->  R )  ->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353   F/wnf 1460   E.wex 1492    e. wcel 2148   F/_wnfc 2306   _Vcvv 2738  (class class class)co 5875    e. cmpo 5877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-setind 4537
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-iota 5179  df-fun 5219  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880
This theorem is referenced by:  ovmpodv  6007  ovmpodv2  6008
  Copyright terms: Public domain W3C validator