ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exlimdd GIF version

Theorem exlimdd 1865
Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypotheses
Ref Expression
exlimdd.1 𝑥𝜑
exlimdd.2 𝑥𝜒
exlimdd.3 (𝜑 → ∃𝑥𝜓)
exlimdd.4 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
exlimdd (𝜑𝜒)

Proof of Theorem exlimdd
StepHypRef Expression
1 exlimdd.3 . 2 (𝜑 → ∃𝑥𝜓)
2 exlimdd.1 . . 3 𝑥𝜑
3 exlimdd.2 . . 3 𝑥𝜒
4 exlimdd.4 . . . 4 ((𝜑𝜓) → 𝜒)
54ex 114 . . 3 (𝜑 → (𝜓𝜒))
62, 3, 5exlimd 1590 . 2 (𝜑 → (∃𝑥𝜓𝜒))
71, 6mpd 13 1 (𝜑𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wnf 1453  wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie2 1487  ax-4 1503
This theorem depends on definitions:  df-bi 116  df-nf 1454
This theorem is referenced by:  fvmptdf  5583  ovmpodf  5984  exmidfodomrlemr  7179  exmidfodomrlemrALT  7180  ltexprlemm  7562
  Copyright terms: Public domain W3C validator