ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exlimdd GIF version

Theorem exlimdd 1896
Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypotheses
Ref Expression
exlimdd.1 𝑥𝜑
exlimdd.2 𝑥𝜒
exlimdd.3 (𝜑 → ∃𝑥𝜓)
exlimdd.4 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
exlimdd (𝜑𝜒)

Proof of Theorem exlimdd
StepHypRef Expression
1 exlimdd.3 . 2 (𝜑 → ∃𝑥𝜓)
2 exlimdd.1 . . 3 𝑥𝜑
3 exlimdd.2 . . 3 𝑥𝜒
4 exlimdd.4 . . . 4 ((𝜑𝜓) → 𝜒)
54ex 115 . . 3 (𝜑 → (𝜓𝜒))
62, 3, 5exlimd 1621 . 2 (𝜑 → (∃𝑥𝜓𝜒))
71, 6mpd 13 1 (𝜑𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wnf 1484  wex 1516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie2 1518  ax-4 1534
This theorem depends on definitions:  df-bi 117  df-nf 1485
This theorem is referenced by:  fvmptdf  5685  ovmpodf  6095  exmidfodomrlemr  7336  exmidfodomrlemrALT  7337  ltexprlemm  7743  dfgrp3mlem  13515
  Copyright terms: Public domain W3C validator