ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expmul Unicode version

Theorem expmul 10655
Description: Product of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 4-Jan-2006.)
Assertion
Ref Expression
expmul  |-  ( ( A  e.  CC  /\  M  e.  NN0  /\  N  e.  NN0 )  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) )

Proof of Theorem expmul
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5926 . . . . . . 7  |-  ( j  =  0  ->  ( M  x.  j )  =  ( M  x.  0 ) )
21oveq2d 5934 . . . . . 6  |-  ( j  =  0  ->  ( A ^ ( M  x.  j ) )  =  ( A ^ ( M  x.  0 ) ) )
3 oveq2 5926 . . . . . 6  |-  ( j  =  0  ->  (
( A ^ M
) ^ j )  =  ( ( A ^ M ) ^
0 ) )
42, 3eqeq12d 2208 . . . . 5  |-  ( j  =  0  ->  (
( A ^ ( M  x.  j )
)  =  ( ( A ^ M ) ^ j )  <->  ( A ^ ( M  x.  0 ) )  =  ( ( A ^ M ) ^ 0 ) ) )
54imbi2d 230 . . . 4  |-  ( j  =  0  ->  (
( ( A  e.  CC  /\  M  e. 
NN0 )  ->  ( A ^ ( M  x.  j ) )  =  ( ( A ^ M ) ^ j
) )  <->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  x.  0 ) )  =  ( ( A ^ M ) ^ 0 ) ) ) )
6 oveq2 5926 . . . . . . 7  |-  ( j  =  k  ->  ( M  x.  j )  =  ( M  x.  k ) )
76oveq2d 5934 . . . . . 6  |-  ( j  =  k  ->  ( A ^ ( M  x.  j ) )  =  ( A ^ ( M  x.  k )
) )
8 oveq2 5926 . . . . . 6  |-  ( j  =  k  ->  (
( A ^ M
) ^ j )  =  ( ( A ^ M ) ^
k ) )
97, 8eqeq12d 2208 . . . . 5  |-  ( j  =  k  ->  (
( A ^ ( M  x.  j )
)  =  ( ( A ^ M ) ^ j )  <->  ( A ^ ( M  x.  k ) )  =  ( ( A ^ M ) ^ k
) ) )
109imbi2d 230 . . . 4  |-  ( j  =  k  ->  (
( ( A  e.  CC  /\  M  e. 
NN0 )  ->  ( A ^ ( M  x.  j ) )  =  ( ( A ^ M ) ^ j
) )  <->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  x.  k ) )  =  ( ( A ^ M ) ^ k
) ) ) )
11 oveq2 5926 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  ( M  x.  j )  =  ( M  x.  ( k  +  1 ) ) )
1211oveq2d 5934 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  ( A ^ ( M  x.  j ) )  =  ( A ^ ( M  x.  ( k  +  1 ) ) ) )
13 oveq2 5926 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( A ^ M
) ^ j )  =  ( ( A ^ M ) ^
( k  +  1 ) ) )
1412, 13eqeq12d 2208 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( A ^ ( M  x.  j )
)  =  ( ( A ^ M ) ^ j )  <->  ( A ^ ( M  x.  ( k  +  1 ) ) )  =  ( ( A ^ M ) ^ (
k  +  1 ) ) ) )
1514imbi2d 230 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( ( A  e.  CC  /\  M  e. 
NN0 )  ->  ( A ^ ( M  x.  j ) )  =  ( ( A ^ M ) ^ j
) )  <->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  x.  ( k  +  1 ) ) )  =  ( ( A ^ M ) ^ (
k  +  1 ) ) ) ) )
16 oveq2 5926 . . . . . . 7  |-  ( j  =  N  ->  ( M  x.  j )  =  ( M  x.  N ) )
1716oveq2d 5934 . . . . . 6  |-  ( j  =  N  ->  ( A ^ ( M  x.  j ) )  =  ( A ^ ( M  x.  N )
) )
18 oveq2 5926 . . . . . 6  |-  ( j  =  N  ->  (
( A ^ M
) ^ j )  =  ( ( A ^ M ) ^ N ) )
1917, 18eqeq12d 2208 . . . . 5  |-  ( j  =  N  ->  (
( A ^ ( M  x.  j )
)  =  ( ( A ^ M ) ^ j )  <->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) ) )
2019imbi2d 230 . . . 4  |-  ( j  =  N  ->  (
( ( A  e.  CC  /\  M  e. 
NN0 )  ->  ( A ^ ( M  x.  j ) )  =  ( ( A ^ M ) ^ j
) )  <->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) ) ) )
21 nn0cn 9250 . . . . . . . 8  |-  ( M  e.  NN0  ->  M  e.  CC )
2221mul01d 8412 . . . . . . 7  |-  ( M  e.  NN0  ->  ( M  x.  0 )  =  0 )
2322oveq2d 5934 . . . . . 6  |-  ( M  e.  NN0  ->  ( A ^ ( M  x.  0 ) )  =  ( A ^ 0 ) )
24 exp0 10614 . . . . . 6  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
2523, 24sylan9eqr 2248 . . . . 5  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ ( M  x.  0 ) )  =  1 )
26 expcl 10628 . . . . . 6  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ M
)  e.  CC )
27 exp0 10614 . . . . . 6  |-  ( ( A ^ M )  e.  CC  ->  (
( A ^ M
) ^ 0 )  =  1 )
2826, 27syl 14 . . . . 5  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( ( A ^ M ) ^ 0 )  =  1 )
2925, 28eqtr4d 2229 . . . 4  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ ( M  x.  0 ) )  =  ( ( A ^ M ) ^ 0 ) )
30 oveq1 5925 . . . . . . 7  |-  ( ( A ^ ( M  x.  k ) )  =  ( ( A ^ M ) ^
k )  ->  (
( A ^ ( M  x.  k )
)  x.  ( A ^ M ) )  =  ( ( ( A ^ M ) ^ k )  x.  ( A ^ M
) ) )
31 nn0cn 9250 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  k  e.  CC )
32 ax-1cn 7965 . . . . . . . . . . . . . 14  |-  1  e.  CC
33 adddi 8004 . . . . . . . . . . . . . 14  |-  ( ( M  e.  CC  /\  k  e.  CC  /\  1  e.  CC )  ->  ( M  x.  ( k  +  1 ) )  =  ( ( M  x.  k )  +  ( M  x.  1 ) ) )
3432, 33mp3an3 1337 . . . . . . . . . . . . 13  |-  ( ( M  e.  CC  /\  k  e.  CC )  ->  ( M  x.  (
k  +  1 ) )  =  ( ( M  x.  k )  +  ( M  x.  1 ) ) )
35 mulrid 8016 . . . . . . . . . . . . . . 15  |-  ( M  e.  CC  ->  ( M  x.  1 )  =  M )
3635adantr 276 . . . . . . . . . . . . . 14  |-  ( ( M  e.  CC  /\  k  e.  CC )  ->  ( M  x.  1 )  =  M )
3736oveq2d 5934 . . . . . . . . . . . . 13  |-  ( ( M  e.  CC  /\  k  e.  CC )  ->  ( ( M  x.  k )  +  ( M  x.  1 ) )  =  ( ( M  x.  k )  +  M ) )
3834, 37eqtrd 2226 . . . . . . . . . . . 12  |-  ( ( M  e.  CC  /\  k  e.  CC )  ->  ( M  x.  (
k  +  1 ) )  =  ( ( M  x.  k )  +  M ) )
3921, 31, 38syl2an 289 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  x.  (
k  +  1 ) )  =  ( ( M  x.  k )  +  M ) )
4039adantll 476 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( M  x.  ( k  +  1 ) )  =  ( ( M  x.  k
)  +  M ) )
4140oveq2d 5934 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
( M  x.  (
k  +  1 ) ) )  =  ( A ^ ( ( M  x.  k )  +  M ) ) )
42 simpll 527 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  A  e.  CC )
43 nn0mulcl 9276 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  x.  k
)  e.  NN0 )
4443adantll 476 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( M  x.  k )  e.  NN0 )
45 simplr 528 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  M  e.  NN0 )
46 expadd 10652 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( M  x.  k
)  e.  NN0  /\  M  e.  NN0 )  -> 
( A ^ (
( M  x.  k
)  +  M ) )  =  ( ( A ^ ( M  x.  k ) )  x.  ( A ^ M ) ) )
4742, 44, 45, 46syl3anc 1249 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
( ( M  x.  k )  +  M
) )  =  ( ( A ^ ( M  x.  k )
)  x.  ( A ^ M ) ) )
4841, 47eqtrd 2226 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
( M  x.  (
k  +  1 ) ) )  =  ( ( A ^ ( M  x.  k )
)  x.  ( A ^ M ) ) )
49 expp1 10617 . . . . . . . . 9  |-  ( ( ( A ^ M
)  e.  CC  /\  k  e.  NN0 )  -> 
( ( A ^ M ) ^ (
k  +  1 ) )  =  ( ( ( A ^ M
) ^ k )  x.  ( A ^ M ) ) )
5026, 49sylan 283 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( A ^ M ) ^
( k  +  1 ) )  =  ( ( ( A ^ M ) ^ k
)  x.  ( A ^ M ) ) )
5148, 50eqeq12d 2208 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( A ^ ( M  x.  ( k  +  1 ) ) )  =  ( ( A ^ M ) ^ (
k  +  1 ) )  <->  ( ( A ^ ( M  x.  k ) )  x.  ( A ^ M
) )  =  ( ( ( A ^ M ) ^ k
)  x.  ( A ^ M ) ) ) )
5230, 51imbitrrid 156 . . . . . 6  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( A ^ ( M  x.  k ) )  =  ( ( A ^ M ) ^ k
)  ->  ( A ^ ( M  x.  ( k  +  1 ) ) )  =  ( ( A ^ M ) ^ (
k  +  1 ) ) ) )
5352expcom 116 . . . . 5  |-  ( k  e.  NN0  ->  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( ( A ^
( M  x.  k
) )  =  ( ( A ^ M
) ^ k )  ->  ( A ^
( M  x.  (
k  +  1 ) ) )  =  ( ( A ^ M
) ^ ( k  +  1 ) ) ) ) )
5453a2d 26 . . . 4  |-  ( k  e.  NN0  ->  ( ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  x.  k )
)  =  ( ( A ^ M ) ^ k ) )  ->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  x.  ( k  +  1 ) ) )  =  ( ( A ^ M ) ^ (
k  +  1 ) ) ) ) )
555, 10, 15, 20, 29, 54nn0ind 9431 . . 3  |-  ( N  e.  NN0  ->  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ ( M  x.  N )
)  =  ( ( A ^ M ) ^ N ) ) )
5655expdcom 1453 . 2  |-  ( A  e.  CC  ->  ( M  e.  NN0  ->  ( N  e.  NN0  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) ) ) )
57563imp 1195 1  |-  ( ( A  e.  CC  /\  M  e.  NN0  /\  N  e.  NN0 )  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164  (class class class)co 5918   CCcc 7870   0cc0 7872   1c1 7873    + caddc 7875    x. cmul 7877   NN0cn0 9240   ^cexp 10609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-seqfrec 10519  df-exp 10610
This theorem is referenced by:  expmulzap  10656  expnass  10716  expmuld  10747
  Copyright terms: Public domain W3C validator