| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expmul | Unicode version | ||
| Description: Product of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| expmul |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5970 |
. . . . . . 7
| |
| 2 | 1 | oveq2d 5978 |
. . . . . 6
|
| 3 | oveq2 5970 |
. . . . . 6
| |
| 4 | 2, 3 | eqeq12d 2221 |
. . . . 5
|
| 5 | 4 | imbi2d 230 |
. . . 4
|
| 6 | oveq2 5970 |
. . . . . . 7
| |
| 7 | 6 | oveq2d 5978 |
. . . . . 6
|
| 8 | oveq2 5970 |
. . . . . 6
| |
| 9 | 7, 8 | eqeq12d 2221 |
. . . . 5
|
| 10 | 9 | imbi2d 230 |
. . . 4
|
| 11 | oveq2 5970 |
. . . . . . 7
| |
| 12 | 11 | oveq2d 5978 |
. . . . . 6
|
| 13 | oveq2 5970 |
. . . . . 6
| |
| 14 | 12, 13 | eqeq12d 2221 |
. . . . 5
|
| 15 | 14 | imbi2d 230 |
. . . 4
|
| 16 | oveq2 5970 |
. . . . . . 7
| |
| 17 | 16 | oveq2d 5978 |
. . . . . 6
|
| 18 | oveq2 5970 |
. . . . . 6
| |
| 19 | 17, 18 | eqeq12d 2221 |
. . . . 5
|
| 20 | 19 | imbi2d 230 |
. . . 4
|
| 21 | nn0cn 9335 |
. . . . . . . 8
| |
| 22 | 21 | mul01d 8495 |
. . . . . . 7
|
| 23 | 22 | oveq2d 5978 |
. . . . . 6
|
| 24 | exp0 10720 |
. . . . . 6
| |
| 25 | 23, 24 | sylan9eqr 2261 |
. . . . 5
|
| 26 | expcl 10734 |
. . . . . 6
| |
| 27 | exp0 10720 |
. . . . . 6
| |
| 28 | 26, 27 | syl 14 |
. . . . 5
|
| 29 | 25, 28 | eqtr4d 2242 |
. . . 4
|
| 30 | oveq1 5969 |
. . . . . . 7
| |
| 31 | nn0cn 9335 |
. . . . . . . . . . . 12
| |
| 32 | ax-1cn 8048 |
. . . . . . . . . . . . . 14
| |
| 33 | adddi 8087 |
. . . . . . . . . . . . . 14
| |
| 34 | 32, 33 | mp3an3 1339 |
. . . . . . . . . . . . 13
|
| 35 | mulrid 8099 |
. . . . . . . . . . . . . . 15
| |
| 36 | 35 | adantr 276 |
. . . . . . . . . . . . . 14
|
| 37 | 36 | oveq2d 5978 |
. . . . . . . . . . . . 13
|
| 38 | 34, 37 | eqtrd 2239 |
. . . . . . . . . . . 12
|
| 39 | 21, 31, 38 | syl2an 289 |
. . . . . . . . . . 11
|
| 40 | 39 | adantll 476 |
. . . . . . . . . 10
|
| 41 | 40 | oveq2d 5978 |
. . . . . . . . 9
|
| 42 | simpll 527 |
. . . . . . . . . 10
| |
| 43 | nn0mulcl 9361 |
. . . . . . . . . . 11
| |
| 44 | 43 | adantll 476 |
. . . . . . . . . 10
|
| 45 | simplr 528 |
. . . . . . . . . 10
| |
| 46 | expadd 10758 |
. . . . . . . . . 10
| |
| 47 | 42, 44, 45, 46 | syl3anc 1250 |
. . . . . . . . 9
|
| 48 | 41, 47 | eqtrd 2239 |
. . . . . . . 8
|
| 49 | expp1 10723 |
. . . . . . . . 9
| |
| 50 | 26, 49 | sylan 283 |
. . . . . . . 8
|
| 51 | 48, 50 | eqeq12d 2221 |
. . . . . . 7
|
| 52 | 30, 51 | imbitrrid 156 |
. . . . . 6
|
| 53 | 52 | expcom 116 |
. . . . 5
|
| 54 | 53 | a2d 26 |
. . . 4
|
| 55 | 5, 10, 15, 20, 29, 54 | nn0ind 9517 |
. . 3
|
| 56 | 55 | expdcom 1463 |
. 2
|
| 57 | 56 | 3imp 1196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 ax-pre-mulext 8073 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-po 4356 df-iso 4357 df-iord 4426 df-on 4428 df-ilim 4429 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-frec 6495 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-reap 8678 df-ap 8685 df-div 8776 df-inn 9067 df-n0 9326 df-z 9403 df-uz 9679 df-seqfrec 10625 df-exp 10716 |
| This theorem is referenced by: expmulzap 10762 expnass 10822 expmuld 10853 |
| Copyright terms: Public domain | W3C validator |