ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expmul Unicode version

Theorem expmul 10676
Description: Product of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 4-Jan-2006.)
Assertion
Ref Expression
expmul  |-  ( ( A  e.  CC  /\  M  e.  NN0  /\  N  e.  NN0 )  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) )

Proof of Theorem expmul
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5930 . . . . . . 7  |-  ( j  =  0  ->  ( M  x.  j )  =  ( M  x.  0 ) )
21oveq2d 5938 . . . . . 6  |-  ( j  =  0  ->  ( A ^ ( M  x.  j ) )  =  ( A ^ ( M  x.  0 ) ) )
3 oveq2 5930 . . . . . 6  |-  ( j  =  0  ->  (
( A ^ M
) ^ j )  =  ( ( A ^ M ) ^
0 ) )
42, 3eqeq12d 2211 . . . . 5  |-  ( j  =  0  ->  (
( A ^ ( M  x.  j )
)  =  ( ( A ^ M ) ^ j )  <->  ( A ^ ( M  x.  0 ) )  =  ( ( A ^ M ) ^ 0 ) ) )
54imbi2d 230 . . . 4  |-  ( j  =  0  ->  (
( ( A  e.  CC  /\  M  e. 
NN0 )  ->  ( A ^ ( M  x.  j ) )  =  ( ( A ^ M ) ^ j
) )  <->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  x.  0 ) )  =  ( ( A ^ M ) ^ 0 ) ) ) )
6 oveq2 5930 . . . . . . 7  |-  ( j  =  k  ->  ( M  x.  j )  =  ( M  x.  k ) )
76oveq2d 5938 . . . . . 6  |-  ( j  =  k  ->  ( A ^ ( M  x.  j ) )  =  ( A ^ ( M  x.  k )
) )
8 oveq2 5930 . . . . . 6  |-  ( j  =  k  ->  (
( A ^ M
) ^ j )  =  ( ( A ^ M ) ^
k ) )
97, 8eqeq12d 2211 . . . . 5  |-  ( j  =  k  ->  (
( A ^ ( M  x.  j )
)  =  ( ( A ^ M ) ^ j )  <->  ( A ^ ( M  x.  k ) )  =  ( ( A ^ M ) ^ k
) ) )
109imbi2d 230 . . . 4  |-  ( j  =  k  ->  (
( ( A  e.  CC  /\  M  e. 
NN0 )  ->  ( A ^ ( M  x.  j ) )  =  ( ( A ^ M ) ^ j
) )  <->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  x.  k ) )  =  ( ( A ^ M ) ^ k
) ) ) )
11 oveq2 5930 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  ( M  x.  j )  =  ( M  x.  ( k  +  1 ) ) )
1211oveq2d 5938 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  ( A ^ ( M  x.  j ) )  =  ( A ^ ( M  x.  ( k  +  1 ) ) ) )
13 oveq2 5930 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( A ^ M
) ^ j )  =  ( ( A ^ M ) ^
( k  +  1 ) ) )
1412, 13eqeq12d 2211 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( A ^ ( M  x.  j )
)  =  ( ( A ^ M ) ^ j )  <->  ( A ^ ( M  x.  ( k  +  1 ) ) )  =  ( ( A ^ M ) ^ (
k  +  1 ) ) ) )
1514imbi2d 230 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( ( A  e.  CC  /\  M  e. 
NN0 )  ->  ( A ^ ( M  x.  j ) )  =  ( ( A ^ M ) ^ j
) )  <->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  x.  ( k  +  1 ) ) )  =  ( ( A ^ M ) ^ (
k  +  1 ) ) ) ) )
16 oveq2 5930 . . . . . . 7  |-  ( j  =  N  ->  ( M  x.  j )  =  ( M  x.  N ) )
1716oveq2d 5938 . . . . . 6  |-  ( j  =  N  ->  ( A ^ ( M  x.  j ) )  =  ( A ^ ( M  x.  N )
) )
18 oveq2 5930 . . . . . 6  |-  ( j  =  N  ->  (
( A ^ M
) ^ j )  =  ( ( A ^ M ) ^ N ) )
1917, 18eqeq12d 2211 . . . . 5  |-  ( j  =  N  ->  (
( A ^ ( M  x.  j )
)  =  ( ( A ^ M ) ^ j )  <->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) ) )
2019imbi2d 230 . . . 4  |-  ( j  =  N  ->  (
( ( A  e.  CC  /\  M  e. 
NN0 )  ->  ( A ^ ( M  x.  j ) )  =  ( ( A ^ M ) ^ j
) )  <->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) ) ) )
21 nn0cn 9259 . . . . . . . 8  |-  ( M  e.  NN0  ->  M  e.  CC )
2221mul01d 8419 . . . . . . 7  |-  ( M  e.  NN0  ->  ( M  x.  0 )  =  0 )
2322oveq2d 5938 . . . . . 6  |-  ( M  e.  NN0  ->  ( A ^ ( M  x.  0 ) )  =  ( A ^ 0 ) )
24 exp0 10635 . . . . . 6  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
2523, 24sylan9eqr 2251 . . . . 5  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ ( M  x.  0 ) )  =  1 )
26 expcl 10649 . . . . . 6  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ M
)  e.  CC )
27 exp0 10635 . . . . . 6  |-  ( ( A ^ M )  e.  CC  ->  (
( A ^ M
) ^ 0 )  =  1 )
2826, 27syl 14 . . . . 5  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( ( A ^ M ) ^ 0 )  =  1 )
2925, 28eqtr4d 2232 . . . 4  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ ( M  x.  0 ) )  =  ( ( A ^ M ) ^ 0 ) )
30 oveq1 5929 . . . . . . 7  |-  ( ( A ^ ( M  x.  k ) )  =  ( ( A ^ M ) ^
k )  ->  (
( A ^ ( M  x.  k )
)  x.  ( A ^ M ) )  =  ( ( ( A ^ M ) ^ k )  x.  ( A ^ M
) ) )
31 nn0cn 9259 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  k  e.  CC )
32 ax-1cn 7972 . . . . . . . . . . . . . 14  |-  1  e.  CC
33 adddi 8011 . . . . . . . . . . . . . 14  |-  ( ( M  e.  CC  /\  k  e.  CC  /\  1  e.  CC )  ->  ( M  x.  ( k  +  1 ) )  =  ( ( M  x.  k )  +  ( M  x.  1 ) ) )
3432, 33mp3an3 1337 . . . . . . . . . . . . 13  |-  ( ( M  e.  CC  /\  k  e.  CC )  ->  ( M  x.  (
k  +  1 ) )  =  ( ( M  x.  k )  +  ( M  x.  1 ) ) )
35 mulrid 8023 . . . . . . . . . . . . . . 15  |-  ( M  e.  CC  ->  ( M  x.  1 )  =  M )
3635adantr 276 . . . . . . . . . . . . . 14  |-  ( ( M  e.  CC  /\  k  e.  CC )  ->  ( M  x.  1 )  =  M )
3736oveq2d 5938 . . . . . . . . . . . . 13  |-  ( ( M  e.  CC  /\  k  e.  CC )  ->  ( ( M  x.  k )  +  ( M  x.  1 ) )  =  ( ( M  x.  k )  +  M ) )
3834, 37eqtrd 2229 . . . . . . . . . . . 12  |-  ( ( M  e.  CC  /\  k  e.  CC )  ->  ( M  x.  (
k  +  1 ) )  =  ( ( M  x.  k )  +  M ) )
3921, 31, 38syl2an 289 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  x.  (
k  +  1 ) )  =  ( ( M  x.  k )  +  M ) )
4039adantll 476 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( M  x.  ( k  +  1 ) )  =  ( ( M  x.  k
)  +  M ) )
4140oveq2d 5938 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
( M  x.  (
k  +  1 ) ) )  =  ( A ^ ( ( M  x.  k )  +  M ) ) )
42 simpll 527 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  A  e.  CC )
43 nn0mulcl 9285 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  x.  k
)  e.  NN0 )
4443adantll 476 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( M  x.  k )  e.  NN0 )
45 simplr 528 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  M  e.  NN0 )
46 expadd 10673 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( M  x.  k
)  e.  NN0  /\  M  e.  NN0 )  -> 
( A ^ (
( M  x.  k
)  +  M ) )  =  ( ( A ^ ( M  x.  k ) )  x.  ( A ^ M ) ) )
4742, 44, 45, 46syl3anc 1249 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
( ( M  x.  k )  +  M
) )  =  ( ( A ^ ( M  x.  k )
)  x.  ( A ^ M ) ) )
4841, 47eqtrd 2229 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
( M  x.  (
k  +  1 ) ) )  =  ( ( A ^ ( M  x.  k )
)  x.  ( A ^ M ) ) )
49 expp1 10638 . . . . . . . . 9  |-  ( ( ( A ^ M
)  e.  CC  /\  k  e.  NN0 )  -> 
( ( A ^ M ) ^ (
k  +  1 ) )  =  ( ( ( A ^ M
) ^ k )  x.  ( A ^ M ) ) )
5026, 49sylan 283 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( A ^ M ) ^
( k  +  1 ) )  =  ( ( ( A ^ M ) ^ k
)  x.  ( A ^ M ) ) )
5148, 50eqeq12d 2211 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( A ^ ( M  x.  ( k  +  1 ) ) )  =  ( ( A ^ M ) ^ (
k  +  1 ) )  <->  ( ( A ^ ( M  x.  k ) )  x.  ( A ^ M
) )  =  ( ( ( A ^ M ) ^ k
)  x.  ( A ^ M ) ) ) )
5230, 51imbitrrid 156 . . . . . 6  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( A ^ ( M  x.  k ) )  =  ( ( A ^ M ) ^ k
)  ->  ( A ^ ( M  x.  ( k  +  1 ) ) )  =  ( ( A ^ M ) ^ (
k  +  1 ) ) ) )
5352expcom 116 . . . . 5  |-  ( k  e.  NN0  ->  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( ( A ^
( M  x.  k
) )  =  ( ( A ^ M
) ^ k )  ->  ( A ^
( M  x.  (
k  +  1 ) ) )  =  ( ( A ^ M
) ^ ( k  +  1 ) ) ) ) )
5453a2d 26 . . . 4  |-  ( k  e.  NN0  ->  ( ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  x.  k )
)  =  ( ( A ^ M ) ^ k ) )  ->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  x.  ( k  +  1 ) ) )  =  ( ( A ^ M ) ^ (
k  +  1 ) ) ) ) )
555, 10, 15, 20, 29, 54nn0ind 9440 . . 3  |-  ( N  e.  NN0  ->  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ ( M  x.  N )
)  =  ( ( A ^ M ) ^ N ) ) )
5655expdcom 1453 . 2  |-  ( A  e.  CC  ->  ( M  e.  NN0  ->  ( N  e.  NN0  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) ) ) )
57563imp 1195 1  |-  ( ( A  e.  CC  /\  M  e.  NN0  /\  N  e.  NN0 )  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167  (class class class)co 5922   CCcc 7877   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884   NN0cn0 9249   ^cexp 10630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-seqfrec 10540  df-exp 10631
This theorem is referenced by:  expmulzap  10677  expnass  10737  expmuld  10768
  Copyright terms: Public domain W3C validator