ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndi Unicode version

Theorem nndi 6382
Description: Distributive law for natural numbers (left-distributivity). Theorem 4K(3) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nndi  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  .o  ( B  +o  C ) )  =  ( ( A  .o  B )  +o  ( A  .o  C ) ) )

Proof of Theorem nndi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5782 . . . . . . 7  |-  ( x  =  C  ->  ( B  +o  x )  =  ( B  +o  C
) )
21oveq2d 5790 . . . . . 6  |-  ( x  =  C  ->  ( A  .o  ( B  +o  x ) )  =  ( A  .o  ( B  +o  C ) ) )
3 oveq2 5782 . . . . . . 7  |-  ( x  =  C  ->  ( A  .o  x )  =  ( A  .o  C
) )
43oveq2d 5790 . . . . . 6  |-  ( x  =  C  ->  (
( A  .o  B
)  +o  ( A  .o  x ) )  =  ( ( A  .o  B )  +o  ( A  .o  C
) ) )
52, 4eqeq12d 2154 . . . . 5  |-  ( x  =  C  ->  (
( A  .o  ( B  +o  x ) )  =  ( ( A  .o  B )  +o  ( A  .o  x
) )  <->  ( A  .o  ( B  +o  C
) )  =  ( ( A  .o  B
)  +o  ( A  .o  C ) ) ) )
65imbi2d 229 . . . 4  |-  ( x  =  C  ->  (
( ( A  e. 
om  /\  B  e.  om )  ->  ( A  .o  ( B  +o  x
) )  =  ( ( A  .o  B
)  +o  ( A  .o  x ) ) )  <->  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  ( B  +o  C ) )  =  ( ( A  .o  B )  +o  ( A  .o  C ) ) ) ) )
7 oveq2 5782 . . . . . . 7  |-  ( x  =  (/)  ->  ( B  +o  x )  =  ( B  +o  (/) ) )
87oveq2d 5790 . . . . . 6  |-  ( x  =  (/)  ->  ( A  .o  ( B  +o  x ) )  =  ( A  .o  ( B  +o  (/) ) ) )
9 oveq2 5782 . . . . . . 7  |-  ( x  =  (/)  ->  ( A  .o  x )  =  ( A  .o  (/) ) )
109oveq2d 5790 . . . . . 6  |-  ( x  =  (/)  ->  ( ( A  .o  B )  +o  ( A  .o  x ) )  =  ( ( A  .o  B )  +o  ( A  .o  (/) ) ) )
118, 10eqeq12d 2154 . . . . 5  |-  ( x  =  (/)  ->  ( ( A  .o  ( B  +o  x ) )  =  ( ( A  .o  B )  +o  ( A  .o  x
) )  <->  ( A  .o  ( B  +o  (/) ) )  =  ( ( A  .o  B )  +o  ( A  .o  (/) ) ) ) )
12 oveq2 5782 . . . . . . 7  |-  ( x  =  y  ->  ( B  +o  x )  =  ( B  +o  y
) )
1312oveq2d 5790 . . . . . 6  |-  ( x  =  y  ->  ( A  .o  ( B  +o  x ) )  =  ( A  .o  ( B  +o  y ) ) )
14 oveq2 5782 . . . . . . 7  |-  ( x  =  y  ->  ( A  .o  x )  =  ( A  .o  y
) )
1514oveq2d 5790 . . . . . 6  |-  ( x  =  y  ->  (
( A  .o  B
)  +o  ( A  .o  x ) )  =  ( ( A  .o  B )  +o  ( A  .o  y
) ) )
1613, 15eqeq12d 2154 . . . . 5  |-  ( x  =  y  ->  (
( A  .o  ( B  +o  x ) )  =  ( ( A  .o  B )  +o  ( A  .o  x
) )  <->  ( A  .o  ( B  +o  y
) )  =  ( ( A  .o  B
)  +o  ( A  .o  y ) ) ) )
17 oveq2 5782 . . . . . . 7  |-  ( x  =  suc  y  -> 
( B  +o  x
)  =  ( B  +o  suc  y ) )
1817oveq2d 5790 . . . . . 6  |-  ( x  =  suc  y  -> 
( A  .o  ( B  +o  x ) )  =  ( A  .o  ( B  +o  suc  y
) ) )
19 oveq2 5782 . . . . . . 7  |-  ( x  =  suc  y  -> 
( A  .o  x
)  =  ( A  .o  suc  y ) )
2019oveq2d 5790 . . . . . 6  |-  ( x  =  suc  y  -> 
( ( A  .o  B )  +o  ( A  .o  x ) )  =  ( ( A  .o  B )  +o  ( A  .o  suc  y ) ) )
2118, 20eqeq12d 2154 . . . . 5  |-  ( x  =  suc  y  -> 
( ( A  .o  ( B  +o  x
) )  =  ( ( A  .o  B
)  +o  ( A  .o  x ) )  <-> 
( A  .o  ( B  +o  suc  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  suc  y ) ) ) )
22 nna0 6370 . . . . . . . . 9  |-  ( B  e.  om  ->  ( B  +o  (/) )  =  B )
2322adantl 275 . . . . . . . 8  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( B  +o  (/) )  =  B )
2423oveq2d 5790 . . . . . . 7  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  ( B  +o  (/) ) )  =  ( A  .o  B
) )
25 nnmcl 6377 . . . . . . . 8  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  B
)  e.  om )
26 nna0 6370 . . . . . . . 8  |-  ( ( A  .o  B )  e.  om  ->  (
( A  .o  B
)  +o  (/) )  =  ( A  .o  B
) )
2725, 26syl 14 . . . . . . 7  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  .o  B )  +o  (/) )  =  ( A  .o  B
) )
2824, 27eqtr4d 2175 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  ( B  +o  (/) ) )  =  ( ( A  .o  B )  +o  (/) ) )
29 nnm0 6371 . . . . . . . 8  |-  ( A  e.  om  ->  ( A  .o  (/) )  =  (/) )
3029adantr 274 . . . . . . 7  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  (/) )  =  (/) )
3130oveq2d 5790 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  .o  B )  +o  ( A  .o  (/) ) )  =  ( ( A  .o  B )  +o  (/) ) )
3228, 31eqtr4d 2175 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  ( B  +o  (/) ) )  =  ( ( A  .o  B )  +o  ( A  .o  (/) ) ) )
33 oveq1 5781 . . . . . . . . 9  |-  ( ( A  .o  ( B  +o  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  y
) )  ->  (
( A  .o  ( B  +o  y ) )  +o  A )  =  ( ( ( A  .o  B )  +o  ( A  .o  y
) )  +o  A
) )
34 nnasuc 6372 . . . . . . . . . . . . 13  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  +o  suc  y )  =  suc  ( B  +o  y
) )
35343adant1 999 . . . . . . . . . . . 12  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  ( B  +o  suc  y )  =  suc  ( B  +o  y ) )
3635oveq2d 5790 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  ( A  .o  ( B  +o  suc  y ) )  =  ( A  .o  suc  ( B  +o  y
) ) )
37 nnacl 6376 . . . . . . . . . . . . 13  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  +o  y
)  e.  om )
38 nnmsuc 6373 . . . . . . . . . . . . 13  |-  ( ( A  e.  om  /\  ( B  +o  y
)  e.  om )  ->  ( A  .o  suc  ( B  +o  y
) )  =  ( ( A  .o  ( B  +o  y ) )  +o  A ) )
3937, 38sylan2 284 . . . . . . . . . . . 12  |-  ( ( A  e.  om  /\  ( B  e.  om  /\  y  e.  om )
)  ->  ( A  .o  suc  ( B  +o  y ) )  =  ( ( A  .o  ( B  +o  y
) )  +o  A
) )
40393impb 1177 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  ( A  .o  suc  ( B  +o  y ) )  =  ( ( A  .o  ( B  +o  y ) )  +o  A ) )
4136, 40eqtrd 2172 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  ( A  .o  ( B  +o  suc  y ) )  =  ( ( A  .o  ( B  +o  y
) )  +o  A
) )
42 nnmsuc 6373 . . . . . . . . . . . . 13  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  .o  suc  y )  =  ( ( A  .o  y
)  +o  A ) )
43423adant2 1000 . . . . . . . . . . . 12  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  ( A  .o  suc  y )  =  ( ( A  .o  y )  +o  A ) )
4443oveq2d 5790 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  (
( A  .o  B
)  +o  ( A  .o  suc  y ) )  =  ( ( A  .o  B )  +o  ( ( A  .o  y )  +o  A ) ) )
45 nnmcl 6377 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  .o  y
)  e.  om )
46 nnaass 6381 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  .o  B
)  e.  om  /\  ( A  .o  y
)  e.  om  /\  A  e.  om )  ->  ( ( ( A  .o  B )  +o  ( A  .o  y
) )  +o  A
)  =  ( ( A  .o  B )  +o  ( ( A  .o  y )  +o  A ) ) )
4725, 46syl3an1 1249 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( A  .o  y
)  e.  om  /\  A  e.  om )  ->  ( ( ( A  .o  B )  +o  ( A  .o  y
) )  +o  A
)  =  ( ( A  .o  B )  +o  ( ( A  .o  y )  +o  A ) ) )
4845, 47syl3an2 1250 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( A  e.  om  /\  y  e.  om )  /\  A  e.  om )  ->  ( ( ( A  .o  B )  +o  ( A  .o  y ) )  +o  A )  =  ( ( A  .o  B
)  +o  ( ( A  .o  y )  +o  A ) ) )
49483exp 1180 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  e. 
om  /\  y  e.  om )  ->  ( A  e.  om  ->  ( (
( A  .o  B
)  +o  ( A  .o  y ) )  +o  A )  =  ( ( A  .o  B )  +o  (
( A  .o  y
)  +o  A ) ) ) ) )
5049exp4b 364 . . . . . . . . . . . . . . 15  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( A  e.  om  ->  ( y  e.  om  ->  ( A  e.  om  ->  ( ( ( A  .o  B )  +o  ( A  .o  y ) )  +o  A )  =  ( ( A  .o  B )  +o  (
( A  .o  y
)  +o  A ) ) ) ) ) ) )
5150pm2.43a 51 . . . . . . . . . . . . . 14  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( y  e.  om  ->  ( A  e.  om  ->  ( ( ( A  .o  B )  +o  ( A  .o  y ) )  +o  A )  =  ( ( A  .o  B )  +o  (
( A  .o  y
)  +o  A ) ) ) ) ) )
5251com4r 86 . . . . . . . . . . . . 13  |-  ( A  e.  om  ->  ( A  e.  om  ->  ( B  e.  om  ->  ( y  e.  om  ->  ( ( ( A  .o  B )  +o  ( A  .o  y ) )  +o  A )  =  ( ( A  .o  B )  +o  (
( A  .o  y
)  +o  A ) ) ) ) ) )
5352pm2.43i 49 . . . . . . . . . . . 12  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( y  e.  om  ->  ( ( ( A  .o  B )  +o  ( A  .o  y ) )  +o  A )  =  ( ( A  .o  B )  +o  (
( A  .o  y
)  +o  A ) ) ) ) )
54533imp 1175 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  (
( ( A  .o  B )  +o  ( A  .o  y ) )  +o  A )  =  ( ( A  .o  B )  +o  (
( A  .o  y
)  +o  A ) ) )
5544, 54eqtr4d 2175 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  (
( A  .o  B
)  +o  ( A  .o  suc  y ) )  =  ( ( ( A  .o  B
)  +o  ( A  .o  y ) )  +o  A ) )
5641, 55eqeq12d 2154 . . . . . . . . 9  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  (
( A  .o  ( B  +o  suc  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  suc  y ) )  <->  ( ( A  .o  ( B  +o  y ) )  +o  A )  =  ( ( ( A  .o  B )  +o  ( A  .o  y ) )  +o  A ) ) )
5733, 56syl5ibr 155 . . . . . . . 8  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  (
( A  .o  ( B  +o  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  y
) )  ->  ( A  .o  ( B  +o  suc  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  suc  y ) ) ) )
58573exp 1180 . . . . . . 7  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( y  e.  om  ->  ( ( A  .o  ( B  +o  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  y
) )  ->  ( A  .o  ( B  +o  suc  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  suc  y ) ) ) ) ) )
5958com3r 79 . . . . . 6  |-  ( y  e.  om  ->  ( A  e.  om  ->  ( B  e.  om  ->  ( ( A  .o  ( B  +o  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  y
) )  ->  ( A  .o  ( B  +o  suc  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  suc  y ) ) ) ) ) )
6059impd 252 . . . . 5  |-  ( y  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( ( A  .o  ( B  +o  y
) )  =  ( ( A  .o  B
)  +o  ( A  .o  y ) )  ->  ( A  .o  ( B  +o  suc  y
) )  =  ( ( A  .o  B
)  +o  ( A  .o  suc  y ) ) ) ) )
6111, 16, 21, 32, 60finds2 4515 . . . 4  |-  ( x  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( A  .o  ( B  +o  x ) )  =  ( ( A  .o  B )  +o  ( A  .o  x
) ) ) )
626, 61vtoclga 2752 . . 3  |-  ( C  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( A  .o  ( B  +o  C ) )  =  ( ( A  .o  B )  +o  ( A  .o  C
) ) ) )
6362expdcom 1418 . 2  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( C  e.  om  ->  ( A  .o  ( B  +o  C ) )  =  ( ( A  .o  B )  +o  ( A  .o  C
) ) ) ) )
64633imp 1175 1  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  .o  ( B  +o  C ) )  =  ( ( A  .o  B )  +o  ( A  .o  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331    e. wcel 1480   (/)c0 3363   suc csuc 4287   omcom 4504  (class class class)co 5774    +o coa 6310    .o comu 6311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-oadd 6317  df-omul 6318
This theorem is referenced by:  nnmass  6383  nndir  6386  distrpig  7141  addcmpblnq0  7251  nnanq0  7266  distrnq0  7267  addassnq0  7270
  Copyright terms: Public domain W3C validator