Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulexp | Unicode version |
Description: Positive integer exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 13-Feb-2005.) |
Ref | Expression |
---|---|
mulexp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5826 | . . . . . 6 | |
2 | oveq2 5826 | . . . . . . 7 | |
3 | oveq2 5826 | . . . . . . 7 | |
4 | 2, 3 | oveq12d 5836 | . . . . . 6 |
5 | 1, 4 | eqeq12d 2172 | . . . . 5 |
6 | 5 | imbi2d 229 | . . . 4 |
7 | oveq2 5826 | . . . . . 6 | |
8 | oveq2 5826 | . . . . . . 7 | |
9 | oveq2 5826 | . . . . . . 7 | |
10 | 8, 9 | oveq12d 5836 | . . . . . 6 |
11 | 7, 10 | eqeq12d 2172 | . . . . 5 |
12 | 11 | imbi2d 229 | . . . 4 |
13 | oveq2 5826 | . . . . . 6 | |
14 | oveq2 5826 | . . . . . . 7 | |
15 | oveq2 5826 | . . . . . . 7 | |
16 | 14, 15 | oveq12d 5836 | . . . . . 6 |
17 | 13, 16 | eqeq12d 2172 | . . . . 5 |
18 | 17 | imbi2d 229 | . . . 4 |
19 | oveq2 5826 | . . . . . 6 | |
20 | oveq2 5826 | . . . . . . 7 | |
21 | oveq2 5826 | . . . . . . 7 | |
22 | 20, 21 | oveq12d 5836 | . . . . . 6 |
23 | 19, 22 | eqeq12d 2172 | . . . . 5 |
24 | 23 | imbi2d 229 | . . . 4 |
25 | mulcl 7842 | . . . . . 6 | |
26 | exp0 10405 | . . . . . 6 | |
27 | 25, 26 | syl 14 | . . . . 5 |
28 | exp0 10405 | . . . . . . 7 | |
29 | exp0 10405 | . . . . . . 7 | |
30 | 28, 29 | oveqan12d 5837 | . . . . . 6 |
31 | 1t1e1 8968 | . . . . . 6 | |
32 | 30, 31 | eqtrdi 2206 | . . . . 5 |
33 | 27, 32 | eqtr4d 2193 | . . . 4 |
34 | expp1 10408 | . . . . . . . . . 10 | |
35 | 25, 34 | sylan 281 | . . . . . . . . 9 |
36 | 35 | adantr 274 | . . . . . . . 8 |
37 | oveq1 5825 | . . . . . . . . 9 | |
38 | expcl 10419 | . . . . . . . . . . . . 13 | |
39 | expcl 10419 | . . . . . . . . . . . . 13 | |
40 | 38, 39 | anim12i 336 | . . . . . . . . . . . 12 |
41 | 40 | anandirs 583 | . . . . . . . . . . 11 |
42 | simpl 108 | . . . . . . . . . . 11 | |
43 | mul4 7990 | . . . . . . . . . . 11 | |
44 | 41, 42, 43 | syl2anc 409 | . . . . . . . . . 10 |
45 | expp1 10408 | . . . . . . . . . . . 12 | |
46 | 45 | adantlr 469 | . . . . . . . . . . 11 |
47 | expp1 10408 | . . . . . . . . . . . 12 | |
48 | 47 | adantll 468 | . . . . . . . . . . 11 |
49 | 46, 48 | oveq12d 5836 | . . . . . . . . . 10 |
50 | 44, 49 | eqtr4d 2193 | . . . . . . . . 9 |
51 | 37, 50 | sylan9eqr 2212 | . . . . . . . 8 |
52 | 36, 51 | eqtrd 2190 | . . . . . . 7 |
53 | 52 | exp31 362 | . . . . . 6 |
54 | 53 | com12 30 | . . . . 5 |
55 | 54 | a2d 26 | . . . 4 |
56 | 6, 12, 18, 24, 33, 55 | nn0ind 9261 | . . 3 |
57 | 56 | expdcom 1422 | . 2 |
58 | 57 | 3imp 1176 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 963 wceq 1335 wcel 2128 (class class class)co 5818 cc 7713 cc0 7715 c1 7716 caddc 7718 cmul 7720 cn0 9073 cexp 10400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-iinf 4545 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-mulrcl 7814 ax-addcom 7815 ax-mulcom 7816 ax-addass 7817 ax-mulass 7818 ax-distr 7819 ax-i2m1 7820 ax-0lt1 7821 ax-1rid 7822 ax-0id 7823 ax-rnegex 7824 ax-precex 7825 ax-cnre 7826 ax-pre-ltirr 7827 ax-pre-ltwlin 7828 ax-pre-lttrn 7829 ax-pre-apti 7830 ax-pre-ltadd 7831 ax-pre-mulgt0 7832 ax-pre-mulext 7833 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4252 df-po 4255 df-iso 4256 df-iord 4325 df-on 4327 df-ilim 4328 df-suc 4330 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-recs 6246 df-frec 6332 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-sub 8031 df-neg 8032 df-reap 8433 df-ap 8440 df-div 8529 df-inn 8817 df-n0 9074 df-z 9151 df-uz 9423 df-seqfrec 10327 df-exp 10401 |
This theorem is referenced by: mulexpzap 10441 expdivap 10452 expubnd 10458 sqmul 10463 mulexpd 10548 efi4p 11596 |
Copyright terms: Public domain | W3C validator |