ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulexp Unicode version

Theorem mulexp 10787
Description: Nonnegative integer exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 13-Feb-2005.)
Assertion
Ref Expression
mulexp  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  (
( A  x.  B
) ^ N )  =  ( ( A ^ N )  x.  ( B ^ N
) ) )

Proof of Theorem mulexp
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6002 . . . . . 6  |-  ( j  =  0  ->  (
( A  x.  B
) ^ j )  =  ( ( A  x.  B ) ^
0 ) )
2 oveq2 6002 . . . . . . 7  |-  ( j  =  0  ->  ( A ^ j )  =  ( A ^ 0 ) )
3 oveq2 6002 . . . . . . 7  |-  ( j  =  0  ->  ( B ^ j )  =  ( B ^ 0 ) )
42, 3oveq12d 6012 . . . . . 6  |-  ( j  =  0  ->  (
( A ^ j
)  x.  ( B ^ j ) )  =  ( ( A ^ 0 )  x.  ( B ^ 0 ) ) )
51, 4eqeq12d 2244 . . . . 5  |-  ( j  =  0  ->  (
( ( A  x.  B ) ^ j
)  =  ( ( A ^ j )  x.  ( B ^
j ) )  <->  ( ( A  x.  B ) ^ 0 )  =  ( ( A ^
0 )  x.  ( B ^ 0 ) ) ) )
65imbi2d 230 . . . 4  |-  ( j  =  0  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  x.  B
) ^ j )  =  ( ( A ^ j )  x.  ( B ^ j
) ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  x.  B
) ^ 0 )  =  ( ( A ^ 0 )  x.  ( B ^ 0 ) ) ) ) )
7 oveq2 6002 . . . . . 6  |-  ( j  =  k  ->  (
( A  x.  B
) ^ j )  =  ( ( A  x.  B ) ^
k ) )
8 oveq2 6002 . . . . . . 7  |-  ( j  =  k  ->  ( A ^ j )  =  ( A ^ k
) )
9 oveq2 6002 . . . . . . 7  |-  ( j  =  k  ->  ( B ^ j )  =  ( B ^ k
) )
108, 9oveq12d 6012 . . . . . 6  |-  ( j  =  k  ->  (
( A ^ j
)  x.  ( B ^ j ) )  =  ( ( A ^ k )  x.  ( B ^ k
) ) )
117, 10eqeq12d 2244 . . . . 5  |-  ( j  =  k  ->  (
( ( A  x.  B ) ^ j
)  =  ( ( A ^ j )  x.  ( B ^
j ) )  <->  ( ( A  x.  B ) ^ k )  =  ( ( A ^
k )  x.  ( B ^ k ) ) ) )
1211imbi2d 230 . . . 4  |-  ( j  =  k  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  x.  B
) ^ j )  =  ( ( A ^ j )  x.  ( B ^ j
) ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  x.  B
) ^ k )  =  ( ( A ^ k )  x.  ( B ^ k
) ) ) ) )
13 oveq2 6002 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( A  x.  B
) ^ j )  =  ( ( A  x.  B ) ^
( k  +  1 ) ) )
14 oveq2 6002 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  ( A ^ j )  =  ( A ^ (
k  +  1 ) ) )
15 oveq2 6002 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  ( B ^ j )  =  ( B ^ (
k  +  1 ) ) )
1614, 15oveq12d 6012 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( A ^ j
)  x.  ( B ^ j ) )  =  ( ( A ^ ( k  +  1 ) )  x.  ( B ^ (
k  +  1 ) ) ) )
1713, 16eqeq12d 2244 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( ( A  x.  B ) ^ j
)  =  ( ( A ^ j )  x.  ( B ^
j ) )  <->  ( ( A  x.  B ) ^ ( k  +  1 ) )  =  ( ( A ^
( k  +  1 ) )  x.  ( B ^ ( k  +  1 ) ) ) ) )
1817imbi2d 230 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  x.  B
) ^ j )  =  ( ( A ^ j )  x.  ( B ^ j
) ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  x.  B
) ^ ( k  +  1 ) )  =  ( ( A ^ ( k  +  1 ) )  x.  ( B ^ (
k  +  1 ) ) ) ) ) )
19 oveq2 6002 . . . . . 6  |-  ( j  =  N  ->  (
( A  x.  B
) ^ j )  =  ( ( A  x.  B ) ^ N ) )
20 oveq2 6002 . . . . . . 7  |-  ( j  =  N  ->  ( A ^ j )  =  ( A ^ N
) )
21 oveq2 6002 . . . . . . 7  |-  ( j  =  N  ->  ( B ^ j )  =  ( B ^ N
) )
2220, 21oveq12d 6012 . . . . . 6  |-  ( j  =  N  ->  (
( A ^ j
)  x.  ( B ^ j ) )  =  ( ( A ^ N )  x.  ( B ^ N
) ) )
2319, 22eqeq12d 2244 . . . . 5  |-  ( j  =  N  ->  (
( ( A  x.  B ) ^ j
)  =  ( ( A ^ j )  x.  ( B ^
j ) )  <->  ( ( A  x.  B ) ^ N )  =  ( ( A ^ N
)  x.  ( B ^ N ) ) ) )
2423imbi2d 230 . . . 4  |-  ( j  =  N  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  x.  B
) ^ j )  =  ( ( A ^ j )  x.  ( B ^ j
) ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  x.  B
) ^ N )  =  ( ( A ^ N )  x.  ( B ^ N
) ) ) ) )
25 mulcl 8114 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
26 exp0 10752 . . . . . 6  |-  ( ( A  x.  B )  e.  CC  ->  (
( A  x.  B
) ^ 0 )  =  1 )
2725, 26syl 14 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B ) ^ 0 )  =  1 )
28 exp0 10752 . . . . . . 7  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
29 exp0 10752 . . . . . . 7  |-  ( B  e.  CC  ->  ( B ^ 0 )  =  1 )
3028, 29oveqan12d 6013 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
0 )  x.  ( B ^ 0 ) )  =  ( 1  x.  1 ) )
31 1t1e1 9251 . . . . . 6  |-  ( 1  x.  1 )  =  1
3230, 31eqtrdi 2278 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
0 )  x.  ( B ^ 0 ) )  =  1 )
3327, 32eqtr4d 2265 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B ) ^ 0 )  =  ( ( A ^ 0 )  x.  ( B ^
0 ) ) )
34 expp1 10755 . . . . . . . . . 10  |-  ( ( ( A  x.  B
)  e.  CC  /\  k  e.  NN0 )  -> 
( ( A  x.  B ) ^ (
k  +  1 ) )  =  ( ( ( A  x.  B
) ^ k )  x.  ( A  x.  B ) ) )
3525, 34sylan 283 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( ( A  x.  B ) ^
( k  +  1 ) )  =  ( ( ( A  x.  B ) ^ k
)  x.  ( A  x.  B ) ) )
3635adantr 276 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  (
( A  x.  B
) ^ k )  =  ( ( A ^ k )  x.  ( B ^ k
) ) )  -> 
( ( A  x.  B ) ^ (
k  +  1 ) )  =  ( ( ( A  x.  B
) ^ k )  x.  ( A  x.  B ) ) )
37 oveq1 6001 . . . . . . . . 9  |-  ( ( ( A  x.  B
) ^ k )  =  ( ( A ^ k )  x.  ( B ^ k
) )  ->  (
( ( A  x.  B ) ^ k
)  x.  ( A  x.  B ) )  =  ( ( ( A ^ k )  x.  ( B ^
k ) )  x.  ( A  x.  B
) ) )
38 expcl 10766 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
39 expcl 10766 . . . . . . . . . . . . 13  |-  ( ( B  e.  CC  /\  k  e.  NN0 )  -> 
( B ^ k
)  e.  CC )
4038, 39anim12i 338 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( B  e.  CC  /\  k  e.  NN0 )
)  ->  ( ( A ^ k )  e.  CC  /\  ( B ^ k )  e.  CC ) )
4140anandirs 595 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( ( A ^ k )  e.  CC  /\  ( B ^ k )  e.  CC ) )
42 simpl 109 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( A  e.  CC  /\  B  e.  CC ) )
43 mul4 8266 . . . . . . . . . . 11  |-  ( ( ( ( A ^
k )  e.  CC  /\  ( B ^ k
)  e.  CC )  /\  ( A  e.  CC  /\  B  e.  CC ) )  -> 
( ( ( A ^ k )  x.  ( B ^ k
) )  x.  ( A  x.  B )
)  =  ( ( ( A ^ k
)  x.  A )  x.  ( ( B ^ k )  x.  B ) ) )
4441, 42, 43syl2anc 411 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( ( ( A ^ k )  x.  ( B ^
k ) )  x.  ( A  x.  B
) )  =  ( ( ( A ^
k )  x.  A
)  x.  ( ( B ^ k )  x.  B ) ) )
45 expp1 10755 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
4645adantlr 477 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( A ^
( k  +  1 ) )  =  ( ( A ^ k
)  x.  A ) )
47 expp1 10755 . . . . . . . . . . . 12  |-  ( ( B  e.  CC  /\  k  e.  NN0 )  -> 
( B ^ (
k  +  1 ) )  =  ( ( B ^ k )  x.  B ) )
4847adantll 476 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( B ^
( k  +  1 ) )  =  ( ( B ^ k
)  x.  B ) )
4946, 48oveq12d 6012 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( ( A ^ ( k  +  1 ) )  x.  ( B ^ (
k  +  1 ) ) )  =  ( ( ( A ^
k )  x.  A
)  x.  ( ( B ^ k )  x.  B ) ) )
5044, 49eqtr4d 2265 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( ( ( A ^ k )  x.  ( B ^
k ) )  x.  ( A  x.  B
) )  =  ( ( A ^ (
k  +  1 ) )  x.  ( B ^ ( k  +  1 ) ) ) )
5137, 50sylan9eqr 2284 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  (
( A  x.  B
) ^ k )  =  ( ( A ^ k )  x.  ( B ^ k
) ) )  -> 
( ( ( A  x.  B ) ^
k )  x.  ( A  x.  B )
)  =  ( ( A ^ ( k  +  1 ) )  x.  ( B ^
( k  +  1 ) ) ) )
5236, 51eqtrd 2262 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  (
( A  x.  B
) ^ k )  =  ( ( A ^ k )  x.  ( B ^ k
) ) )  -> 
( ( A  x.  B ) ^ (
k  +  1 ) )  =  ( ( A ^ ( k  +  1 ) )  x.  ( B ^
( k  +  1 ) ) ) )
5352exp31 364 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( k  e.  NN0  ->  ( ( ( A  x.  B ) ^
k )  =  ( ( A ^ k
)  x.  ( B ^ k ) )  ->  ( ( A  x.  B ) ^
( k  +  1 ) )  =  ( ( A ^ (
k  +  1 ) )  x.  ( B ^ ( k  +  1 ) ) ) ) ) )
5453com12 30 . . . . 5  |-  ( k  e.  NN0  ->  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  B ) ^
k )  =  ( ( A ^ k
)  x.  ( B ^ k ) )  ->  ( ( A  x.  B ) ^
( k  +  1 ) )  =  ( ( A ^ (
k  +  1 ) )  x.  ( B ^ ( k  +  1 ) ) ) ) ) )
5554a2d 26 . . . 4  |-  ( k  e.  NN0  ->  ( ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B ) ^
k )  =  ( ( A ^ k
)  x.  ( B ^ k ) ) )  ->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  x.  B
) ^ ( k  +  1 ) )  =  ( ( A ^ ( k  +  1 ) )  x.  ( B ^ (
k  +  1 ) ) ) ) ) )
566, 12, 18, 24, 33, 55nn0ind 9549 . . 3  |-  ( N  e.  NN0  ->  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B ) ^ N
)  =  ( ( A ^ N )  x.  ( B ^ N ) ) ) )
5756expdcom 1485 . 2  |-  ( A  e.  CC  ->  ( B  e.  CC  ->  ( N  e.  NN0  ->  ( ( A  x.  B
) ^ N )  =  ( ( A ^ N )  x.  ( B ^ N
) ) ) ) )
58573imp 1217 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  (
( A  x.  B
) ^ N )  =  ( ( A ^ N )  x.  ( B ^ N
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200  (class class class)co 5994   CCcc 7985   0cc0 7987   1c1 7988    + caddc 7990    x. cmul 7992   NN0cn0 9357   ^cexp 10747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-n0 9358  df-z 9435  df-uz 9711  df-seqfrec 10657  df-exp 10748
This theorem is referenced by:  mulexpzap  10788  expdivap  10799  expubnd  10805  sqmul  10810  mulexpd  10897  efi4p  12214
  Copyright terms: Public domain W3C validator