| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nnmass | Unicode version | ||
| Description: Multiplication of natural numbers is associative. Theorem 4K(4) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) | 
| Ref | Expression | 
|---|---|
| nnmass | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oveq2 5930 | 
. . . . . 6
 | |
| 2 | oveq2 5930 | 
. . . . . . 7
 | |
| 3 | 2 | oveq2d 5938 | 
. . . . . 6
 | 
| 4 | 1, 3 | eqeq12d 2211 | 
. . . . 5
 | 
| 5 | 4 | imbi2d 230 | 
. . . 4
 | 
| 6 | oveq2 5930 | 
. . . . . 6
 | |
| 7 | oveq2 5930 | 
. . . . . . 7
 | |
| 8 | 7 | oveq2d 5938 | 
. . . . . 6
 | 
| 9 | 6, 8 | eqeq12d 2211 | 
. . . . 5
 | 
| 10 | oveq2 5930 | 
. . . . . 6
 | |
| 11 | oveq2 5930 | 
. . . . . . 7
 | |
| 12 | 11 | oveq2d 5938 | 
. . . . . 6
 | 
| 13 | 10, 12 | eqeq12d 2211 | 
. . . . 5
 | 
| 14 | oveq2 5930 | 
. . . . . 6
 | |
| 15 | oveq2 5930 | 
. . . . . . 7
 | |
| 16 | 15 | oveq2d 5938 | 
. . . . . 6
 | 
| 17 | 14, 16 | eqeq12d 2211 | 
. . . . 5
 | 
| 18 | nnmcl 6539 | 
. . . . . . 7
 | |
| 19 | nnm0 6533 | 
. . . . . . 7
 | |
| 20 | 18, 19 | syl 14 | 
. . . . . 6
 | 
| 21 | nnm0 6533 | 
. . . . . . . 8
 | |
| 22 | 21 | oveq2d 5938 | 
. . . . . . 7
 | 
| 23 | nnm0 6533 | 
. . . . . . 7
 | |
| 24 | 22, 23 | sylan9eqr 2251 | 
. . . . . 6
 | 
| 25 | 20, 24 | eqtr4d 2232 | 
. . . . 5
 | 
| 26 | oveq1 5929 | 
. . . . . . . . 9
 | |
| 27 | nnmsuc 6535 | 
. . . . . . . . . . . 12
 | |
| 28 | 18, 27 | sylan 283 | 
. . . . . . . . . . 11
 | 
| 29 | 28 | 3impa 1196 | 
. . . . . . . . . 10
 | 
| 30 | nnmsuc 6535 | 
. . . . . . . . . . . . 13
 | |
| 31 | 30 | 3adant1 1017 | 
. . . . . . . . . . . 12
 | 
| 32 | 31 | oveq2d 5938 | 
. . . . . . . . . . 11
 | 
| 33 | nnmcl 6539 | 
. . . . . . . . . . . . . . . . 17
 | |
| 34 | nndi 6544 | 
. . . . . . . . . . . . . . . . 17
 | |
| 35 | 33, 34 | syl3an2 1283 | 
. . . . . . . . . . . . . . . 16
 | 
| 36 | 35 | 3exp 1204 | 
. . . . . . . . . . . . . . 15
 | 
| 37 | 36 | expd 258 | 
. . . . . . . . . . . . . 14
 | 
| 38 | 37 | com34 83 | 
. . . . . . . . . . . . 13
 | 
| 39 | 38 | pm2.43d 50 | 
. . . . . . . . . . . 12
 | 
| 40 | 39 | 3imp 1195 | 
. . . . . . . . . . 11
 | 
| 41 | 32, 40 | eqtrd 2229 | 
. . . . . . . . . 10
 | 
| 42 | 29, 41 | eqeq12d 2211 | 
. . . . . . . . 9
 | 
| 43 | 26, 42 | imbitrrid 156 | 
. . . . . . . 8
 | 
| 44 | 43 | 3exp 1204 | 
. . . . . . 7
 | 
| 45 | 44 | com3r 79 | 
. . . . . 6
 | 
| 46 | 45 | impd 254 | 
. . . . 5
 | 
| 47 | 9, 13, 17, 25, 46 | finds2 4637 | 
. . . 4
 | 
| 48 | 5, 47 | vtoclga 2830 | 
. . 3
 | 
| 49 | 48 | expdcom 1453 | 
. 2
 | 
| 50 | 49 | 3imp 1195 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-oadd 6478 df-omul 6479 | 
| This theorem is referenced by: mulasspig 7399 enq0tr 7501 addcmpblnq0 7510 mulcmpblnq0 7511 mulcanenq0ec 7512 distrnq0 7526 addassnq0 7529 | 
| Copyright terms: Public domain | W3C validator |