Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnmass | Unicode version |
Description: Multiplication of natural numbers is associative. Theorem 4K(4) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
nnmass |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5850 | . . . . . 6 | |
2 | oveq2 5850 | . . . . . . 7 | |
3 | 2 | oveq2d 5858 | . . . . . 6 |
4 | 1, 3 | eqeq12d 2180 | . . . . 5 |
5 | 4 | imbi2d 229 | . . . 4 |
6 | oveq2 5850 | . . . . . 6 | |
7 | oveq2 5850 | . . . . . . 7 | |
8 | 7 | oveq2d 5858 | . . . . . 6 |
9 | 6, 8 | eqeq12d 2180 | . . . . 5 |
10 | oveq2 5850 | . . . . . 6 | |
11 | oveq2 5850 | . . . . . . 7 | |
12 | 11 | oveq2d 5858 | . . . . . 6 |
13 | 10, 12 | eqeq12d 2180 | . . . . 5 |
14 | oveq2 5850 | . . . . . 6 | |
15 | oveq2 5850 | . . . . . . 7 | |
16 | 15 | oveq2d 5858 | . . . . . 6 |
17 | 14, 16 | eqeq12d 2180 | . . . . 5 |
18 | nnmcl 6449 | . . . . . . 7 | |
19 | nnm0 6443 | . . . . . . 7 | |
20 | 18, 19 | syl 14 | . . . . . 6 |
21 | nnm0 6443 | . . . . . . . 8 | |
22 | 21 | oveq2d 5858 | . . . . . . 7 |
23 | nnm0 6443 | . . . . . . 7 | |
24 | 22, 23 | sylan9eqr 2221 | . . . . . 6 |
25 | 20, 24 | eqtr4d 2201 | . . . . 5 |
26 | oveq1 5849 | . . . . . . . . 9 | |
27 | nnmsuc 6445 | . . . . . . . . . . . 12 | |
28 | 18, 27 | sylan 281 | . . . . . . . . . . 11 |
29 | 28 | 3impa 1184 | . . . . . . . . . 10 |
30 | nnmsuc 6445 | . . . . . . . . . . . . 13 | |
31 | 30 | 3adant1 1005 | . . . . . . . . . . . 12 |
32 | 31 | oveq2d 5858 | . . . . . . . . . . 11 |
33 | nnmcl 6449 | . . . . . . . . . . . . . . . . 17 | |
34 | nndi 6454 | . . . . . . . . . . . . . . . . 17 | |
35 | 33, 34 | syl3an2 1262 | . . . . . . . . . . . . . . . 16 |
36 | 35 | 3exp 1192 | . . . . . . . . . . . . . . 15 |
37 | 36 | expd 256 | . . . . . . . . . . . . . 14 |
38 | 37 | com34 83 | . . . . . . . . . . . . 13 |
39 | 38 | pm2.43d 50 | . . . . . . . . . . . 12 |
40 | 39 | 3imp 1183 | . . . . . . . . . . 11 |
41 | 32, 40 | eqtrd 2198 | . . . . . . . . . 10 |
42 | 29, 41 | eqeq12d 2180 | . . . . . . . . 9 |
43 | 26, 42 | syl5ibr 155 | . . . . . . . 8 |
44 | 43 | 3exp 1192 | . . . . . . 7 |
45 | 44 | com3r 79 | . . . . . 6 |
46 | 45 | impd 252 | . . . . 5 |
47 | 9, 13, 17, 25, 46 | finds2 4578 | . . . 4 |
48 | 5, 47 | vtoclga 2792 | . . 3 |
49 | 48 | expdcom 1430 | . 2 |
50 | 49 | 3imp 1183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 c0 3409 csuc 4343 com 4567 (class class class)co 5842 coa 6381 comu 6382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-oadd 6388 df-omul 6389 |
This theorem is referenced by: mulasspig 7273 enq0tr 7375 addcmpblnq0 7384 mulcmpblnq0 7385 mulcanenq0ec 7386 distrnq0 7400 addassnq0 7403 |
Copyright terms: Public domain | W3C validator |