ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expadd Unicode version

Theorem expadd 10366
Description: Sum of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by NM, 30-Nov-2004.)
Assertion
Ref Expression
expadd  |-  ( ( A  e.  CC  /\  M  e.  NN0  /\  N  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) )

Proof of Theorem expadd
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5790 . . . . . . 7  |-  ( j  =  0  ->  ( M  +  j )  =  ( M  + 
0 ) )
21oveq2d 5798 . . . . . 6  |-  ( j  =  0  ->  ( A ^ ( M  +  j ) )  =  ( A ^ ( M  +  0 ) ) )
3 oveq2 5790 . . . . . . 7  |-  ( j  =  0  ->  ( A ^ j )  =  ( A ^ 0 ) )
43oveq2d 5798 . . . . . 6  |-  ( j  =  0  ->  (
( A ^ M
)  x.  ( A ^ j ) )  =  ( ( A ^ M )  x.  ( A ^ 0 ) ) )
52, 4eqeq12d 2155 . . . . 5  |-  ( j  =  0  ->  (
( A ^ ( M  +  j )
)  =  ( ( A ^ M )  x.  ( A ^
j ) )  <->  ( A ^ ( M  + 
0 ) )  =  ( ( A ^ M )  x.  ( A ^ 0 ) ) ) )
65imbi2d 229 . . . 4  |-  ( j  =  0  ->  (
( ( A  e.  CC  /\  M  e. 
NN0 )  ->  ( A ^ ( M  +  j ) )  =  ( ( A ^ M )  x.  ( A ^ j ) ) )  <->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  + 
0 ) )  =  ( ( A ^ M )  x.  ( A ^ 0 ) ) ) ) )
7 oveq2 5790 . . . . . . 7  |-  ( j  =  k  ->  ( M  +  j )  =  ( M  +  k ) )
87oveq2d 5798 . . . . . 6  |-  ( j  =  k  ->  ( A ^ ( M  +  j ) )  =  ( A ^ ( M  +  k )
) )
9 oveq2 5790 . . . . . . 7  |-  ( j  =  k  ->  ( A ^ j )  =  ( A ^ k
) )
109oveq2d 5798 . . . . . 6  |-  ( j  =  k  ->  (
( A ^ M
)  x.  ( A ^ j ) )  =  ( ( A ^ M )  x.  ( A ^ k
) ) )
118, 10eqeq12d 2155 . . . . 5  |-  ( j  =  k  ->  (
( A ^ ( M  +  j )
)  =  ( ( A ^ M )  x.  ( A ^
j ) )  <->  ( A ^ ( M  +  k ) )  =  ( ( A ^ M )  x.  ( A ^ k ) ) ) )
1211imbi2d 229 . . . 4  |-  ( j  =  k  ->  (
( ( A  e.  CC  /\  M  e. 
NN0 )  ->  ( A ^ ( M  +  j ) )  =  ( ( A ^ M )  x.  ( A ^ j ) ) )  <->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  +  k ) )  =  ( ( A ^ M )  x.  ( A ^ k ) ) ) ) )
13 oveq2 5790 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  ( M  +  j )  =  ( M  +  ( k  +  1 ) ) )
1413oveq2d 5798 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  ( A ^ ( M  +  j ) )  =  ( A ^ ( M  +  ( k  +  1 ) ) ) )
15 oveq2 5790 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  ( A ^ j )  =  ( A ^ (
k  +  1 ) ) )
1615oveq2d 5798 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( A ^ M
)  x.  ( A ^ j ) )  =  ( ( A ^ M )  x.  ( A ^ (
k  +  1 ) ) ) )
1714, 16eqeq12d 2155 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( A ^ ( M  +  j )
)  =  ( ( A ^ M )  x.  ( A ^
j ) )  <->  ( A ^ ( M  +  ( k  +  1 ) ) )  =  ( ( A ^ M )  x.  ( A ^ ( k  +  1 ) ) ) ) )
1817imbi2d 229 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( ( A  e.  CC  /\  M  e. 
NN0 )  ->  ( A ^ ( M  +  j ) )  =  ( ( A ^ M )  x.  ( A ^ j ) ) )  <->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  +  ( k  +  1 ) ) )  =  ( ( A ^ M )  x.  ( A ^ ( k  +  1 ) ) ) ) ) )
19 oveq2 5790 . . . . . . 7  |-  ( j  =  N  ->  ( M  +  j )  =  ( M  +  N ) )
2019oveq2d 5798 . . . . . 6  |-  ( j  =  N  ->  ( A ^ ( M  +  j ) )  =  ( A ^ ( M  +  N )
) )
21 oveq2 5790 . . . . . . 7  |-  ( j  =  N  ->  ( A ^ j )  =  ( A ^ N
) )
2221oveq2d 5798 . . . . . 6  |-  ( j  =  N  ->  (
( A ^ M
)  x.  ( A ^ j ) )  =  ( ( A ^ M )  x.  ( A ^ N
) ) )
2320, 22eqeq12d 2155 . . . . 5  |-  ( j  =  N  ->  (
( A ^ ( M  +  j )
)  =  ( ( A ^ M )  x.  ( A ^
j ) )  <->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
2423imbi2d 229 . . . 4  |-  ( j  =  N  ->  (
( ( A  e.  CC  /\  M  e. 
NN0 )  ->  ( A ^ ( M  +  j ) )  =  ( ( A ^ M )  x.  ( A ^ j ) ) )  <->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) ) )
25 nn0cn 9011 . . . . . . . . 9  |-  ( M  e.  NN0  ->  M  e.  CC )
2625addid1d 7935 . . . . . . . 8  |-  ( M  e.  NN0  ->  ( M  +  0 )  =  M )
2726adantl 275 . . . . . . 7  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( M  +  0 )  =  M )
2827oveq2d 5798 . . . . . 6  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ ( M  +  0 ) )  =  ( A ^ M ) )
29 expcl 10342 . . . . . . 7  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ M
)  e.  CC )
3029mulid1d 7807 . . . . . 6  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( ( A ^ M )  x.  1 )  =  ( A ^ M ) )
3128, 30eqtr4d 2176 . . . . 5  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ ( M  +  0 ) )  =  ( ( A ^ M )  x.  1 ) )
32 exp0 10328 . . . . . . 7  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
3332adantr 274 . . . . . 6  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ 0 )  =  1 )
3433oveq2d 5798 . . . . 5  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( ( A ^ M )  x.  ( A ^ 0 ) )  =  ( ( A ^ M )  x.  1 ) )
3531, 34eqtr4d 2176 . . . 4  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ ( M  +  0 ) )  =  ( ( A ^ M )  x.  ( A ^
0 ) ) )
36 oveq1 5789 . . . . . . 7  |-  ( ( A ^ ( M  +  k ) )  =  ( ( A ^ M )  x.  ( A ^ k
) )  ->  (
( A ^ ( M  +  k )
)  x.  A )  =  ( ( ( A ^ M )  x.  ( A ^
k ) )  x.  A ) )
37 nn0cn 9011 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  k  e.  CC )
38 ax-1cn 7737 . . . . . . . . . . . . 13  |-  1  e.  CC
39 addass 7774 . . . . . . . . . . . . 13  |-  ( ( M  e.  CC  /\  k  e.  CC  /\  1  e.  CC )  ->  (
( M  +  k )  +  1 )  =  ( M  +  ( k  +  1 ) ) )
4038, 39mp3an3 1305 . . . . . . . . . . . 12  |-  ( ( M  e.  CC  /\  k  e.  CC )  ->  ( ( M  +  k )  +  1 )  =  ( M  +  ( k  +  1 ) ) )
4125, 37, 40syl2an 287 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ( M  +  k )  +  1 )  =  ( M  +  ( k  +  1 ) ) )
4241adantll 468 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( M  +  k )  +  1 )  =  ( M  +  ( k  +  1 ) ) )
4342oveq2d 5798 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
( ( M  +  k )  +  1 ) )  =  ( A ^ ( M  +  ( k  +  1 ) ) ) )
44 simpll 519 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  A  e.  CC )
45 nn0addcl 9036 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  +  k )  e.  NN0 )
4645adantll 468 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( M  +  k )  e.  NN0 )
47 expp1 10331 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( M  +  k
)  e.  NN0 )  ->  ( A ^ (
( M  +  k )  +  1 ) )  =  ( ( A ^ ( M  +  k ) )  x.  A ) )
4844, 46, 47syl2anc 409 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
( ( M  +  k )  +  1 ) )  =  ( ( A ^ ( M  +  k )
)  x.  A ) )
4943, 48eqtr3d 2175 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
( M  +  ( k  +  1 ) ) )  =  ( ( A ^ ( M  +  k )
)  x.  A ) )
50 expp1 10331 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
5150adantlr 469 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
( k  +  1 ) )  =  ( ( A ^ k
)  x.  A ) )
5251oveq2d 5798 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( A ^ M )  x.  ( A ^ (
k  +  1 ) ) )  =  ( ( A ^ M
)  x.  ( ( A ^ k )  x.  A ) ) )
5329adantr 274 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^ M )  e.  CC )
54 expcl 10342 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
5554adantlr 469 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
k )  e.  CC )
5653, 55, 44mulassd 7813 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( ( A ^ M )  x.  ( A ^
k ) )  x.  A )  =  ( ( A ^ M
)  x.  ( ( A ^ k )  x.  A ) ) )
5752, 56eqtr4d 2176 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( A ^ M )  x.  ( A ^ (
k  +  1 ) ) )  =  ( ( ( A ^ M )  x.  ( A ^ k ) )  x.  A ) )
5849, 57eqeq12d 2155 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( A ^ ( M  +  ( k  +  1 ) ) )  =  ( ( A ^ M )  x.  ( A ^ ( k  +  1 ) ) )  <-> 
( ( A ^
( M  +  k ) )  x.  A
)  =  ( ( ( A ^ M
)  x.  ( A ^ k ) )  x.  A ) ) )
5936, 58syl5ibr 155 . . . . . 6  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( A ^ ( M  +  k ) )  =  ( ( A ^ M )  x.  ( A ^ k ) )  ->  ( A ^
( M  +  ( k  +  1 ) ) )  =  ( ( A ^ M
)  x.  ( A ^ ( k  +  1 ) ) ) ) )
6059expcom 115 . . . . 5  |-  ( k  e.  NN0  ->  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( ( A ^
( M  +  k ) )  =  ( ( A ^ M
)  x.  ( A ^ k ) )  ->  ( A ^
( M  +  ( k  +  1 ) ) )  =  ( ( A ^ M
)  x.  ( A ^ ( k  +  1 ) ) ) ) ) )
6160a2d 26 . . . 4  |-  ( k  e.  NN0  ->  ( ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  +  k )
)  =  ( ( A ^ M )  x.  ( A ^
k ) ) )  ->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  +  ( k  +  1 ) ) )  =  ( ( A ^ M )  x.  ( A ^ ( k  +  1 ) ) ) ) ) )
626, 12, 18, 24, 35, 61nn0ind 9189 . . 3  |-  ( N  e.  NN0  ->  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ ( M  +  N )
)  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
6362expdcom 1419 . 2  |-  ( A  e.  CC  ->  ( M  e.  NN0  ->  ( N  e.  NN0  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) ) )
64633imp 1176 1  |-  ( ( A  e.  CC  /\  M  e.  NN0  /\  N  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963    = wceq 1332    e. wcel 1481  (class class class)co 5782   CCcc 7642   0cc0 7644   1c1 7645    + caddc 7647    x. cmul 7649   NN0cn0 9001   ^cexp 10323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-seqfrec 10250  df-exp 10324
This theorem is referenced by:  expaddzaplem  10367  expaddzap  10368  expmul  10369  i4  10426  expaddd  10457  ef01bndlem  11499
  Copyright terms: Public domain W3C validator