ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expadd Unicode version

Theorem expadd 10548
Description: Sum of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by NM, 30-Nov-2004.)
Assertion
Ref Expression
expadd  |-  ( ( A  e.  CC  /\  M  e.  NN0  /\  N  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) )

Proof of Theorem expadd
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5877 . . . . . . 7  |-  ( j  =  0  ->  ( M  +  j )  =  ( M  + 
0 ) )
21oveq2d 5885 . . . . . 6  |-  ( j  =  0  ->  ( A ^ ( M  +  j ) )  =  ( A ^ ( M  +  0 ) ) )
3 oveq2 5877 . . . . . . 7  |-  ( j  =  0  ->  ( A ^ j )  =  ( A ^ 0 ) )
43oveq2d 5885 . . . . . 6  |-  ( j  =  0  ->  (
( A ^ M
)  x.  ( A ^ j ) )  =  ( ( A ^ M )  x.  ( A ^ 0 ) ) )
52, 4eqeq12d 2192 . . . . 5  |-  ( j  =  0  ->  (
( A ^ ( M  +  j )
)  =  ( ( A ^ M )  x.  ( A ^
j ) )  <->  ( A ^ ( M  + 
0 ) )  =  ( ( A ^ M )  x.  ( A ^ 0 ) ) ) )
65imbi2d 230 . . . 4  |-  ( j  =  0  ->  (
( ( A  e.  CC  /\  M  e. 
NN0 )  ->  ( A ^ ( M  +  j ) )  =  ( ( A ^ M )  x.  ( A ^ j ) ) )  <->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  + 
0 ) )  =  ( ( A ^ M )  x.  ( A ^ 0 ) ) ) ) )
7 oveq2 5877 . . . . . . 7  |-  ( j  =  k  ->  ( M  +  j )  =  ( M  +  k ) )
87oveq2d 5885 . . . . . 6  |-  ( j  =  k  ->  ( A ^ ( M  +  j ) )  =  ( A ^ ( M  +  k )
) )
9 oveq2 5877 . . . . . . 7  |-  ( j  =  k  ->  ( A ^ j )  =  ( A ^ k
) )
109oveq2d 5885 . . . . . 6  |-  ( j  =  k  ->  (
( A ^ M
)  x.  ( A ^ j ) )  =  ( ( A ^ M )  x.  ( A ^ k
) ) )
118, 10eqeq12d 2192 . . . . 5  |-  ( j  =  k  ->  (
( A ^ ( M  +  j )
)  =  ( ( A ^ M )  x.  ( A ^
j ) )  <->  ( A ^ ( M  +  k ) )  =  ( ( A ^ M )  x.  ( A ^ k ) ) ) )
1211imbi2d 230 . . . 4  |-  ( j  =  k  ->  (
( ( A  e.  CC  /\  M  e. 
NN0 )  ->  ( A ^ ( M  +  j ) )  =  ( ( A ^ M )  x.  ( A ^ j ) ) )  <->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  +  k ) )  =  ( ( A ^ M )  x.  ( A ^ k ) ) ) ) )
13 oveq2 5877 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  ( M  +  j )  =  ( M  +  ( k  +  1 ) ) )
1413oveq2d 5885 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  ( A ^ ( M  +  j ) )  =  ( A ^ ( M  +  ( k  +  1 ) ) ) )
15 oveq2 5877 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  ( A ^ j )  =  ( A ^ (
k  +  1 ) ) )
1615oveq2d 5885 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( A ^ M
)  x.  ( A ^ j ) )  =  ( ( A ^ M )  x.  ( A ^ (
k  +  1 ) ) ) )
1714, 16eqeq12d 2192 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( A ^ ( M  +  j )
)  =  ( ( A ^ M )  x.  ( A ^
j ) )  <->  ( A ^ ( M  +  ( k  +  1 ) ) )  =  ( ( A ^ M )  x.  ( A ^ ( k  +  1 ) ) ) ) )
1817imbi2d 230 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( ( A  e.  CC  /\  M  e. 
NN0 )  ->  ( A ^ ( M  +  j ) )  =  ( ( A ^ M )  x.  ( A ^ j ) ) )  <->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  +  ( k  +  1 ) ) )  =  ( ( A ^ M )  x.  ( A ^ ( k  +  1 ) ) ) ) ) )
19 oveq2 5877 . . . . . . 7  |-  ( j  =  N  ->  ( M  +  j )  =  ( M  +  N ) )
2019oveq2d 5885 . . . . . 6  |-  ( j  =  N  ->  ( A ^ ( M  +  j ) )  =  ( A ^ ( M  +  N )
) )
21 oveq2 5877 . . . . . . 7  |-  ( j  =  N  ->  ( A ^ j )  =  ( A ^ N
) )
2221oveq2d 5885 . . . . . 6  |-  ( j  =  N  ->  (
( A ^ M
)  x.  ( A ^ j ) )  =  ( ( A ^ M )  x.  ( A ^ N
) ) )
2320, 22eqeq12d 2192 . . . . 5  |-  ( j  =  N  ->  (
( A ^ ( M  +  j )
)  =  ( ( A ^ M )  x.  ( A ^
j ) )  <->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
2423imbi2d 230 . . . 4  |-  ( j  =  N  ->  (
( ( A  e.  CC  /\  M  e. 
NN0 )  ->  ( A ^ ( M  +  j ) )  =  ( ( A ^ M )  x.  ( A ^ j ) ) )  <->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) ) )
25 nn0cn 9175 . . . . . . . . 9  |-  ( M  e.  NN0  ->  M  e.  CC )
2625addid1d 8096 . . . . . . . 8  |-  ( M  e.  NN0  ->  ( M  +  0 )  =  M )
2726adantl 277 . . . . . . 7  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( M  +  0 )  =  M )
2827oveq2d 5885 . . . . . 6  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ ( M  +  0 ) )  =  ( A ^ M ) )
29 expcl 10524 . . . . . . 7  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ M
)  e.  CC )
3029mulid1d 7965 . . . . . 6  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( ( A ^ M )  x.  1 )  =  ( A ^ M ) )
3128, 30eqtr4d 2213 . . . . 5  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ ( M  +  0 ) )  =  ( ( A ^ M )  x.  1 ) )
32 exp0 10510 . . . . . . 7  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
3332adantr 276 . . . . . 6  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ 0 )  =  1 )
3433oveq2d 5885 . . . . 5  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( ( A ^ M )  x.  ( A ^ 0 ) )  =  ( ( A ^ M )  x.  1 ) )
3531, 34eqtr4d 2213 . . . 4  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ ( M  +  0 ) )  =  ( ( A ^ M )  x.  ( A ^
0 ) ) )
36 oveq1 5876 . . . . . . 7  |-  ( ( A ^ ( M  +  k ) )  =  ( ( A ^ M )  x.  ( A ^ k
) )  ->  (
( A ^ ( M  +  k )
)  x.  A )  =  ( ( ( A ^ M )  x.  ( A ^
k ) )  x.  A ) )
37 nn0cn 9175 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  k  e.  CC )
38 ax-1cn 7895 . . . . . . . . . . . . 13  |-  1  e.  CC
39 addass 7932 . . . . . . . . . . . . 13  |-  ( ( M  e.  CC  /\  k  e.  CC  /\  1  e.  CC )  ->  (
( M  +  k )  +  1 )  =  ( M  +  ( k  +  1 ) ) )
4038, 39mp3an3 1326 . . . . . . . . . . . 12  |-  ( ( M  e.  CC  /\  k  e.  CC )  ->  ( ( M  +  k )  +  1 )  =  ( M  +  ( k  +  1 ) ) )
4125, 37, 40syl2an 289 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ( M  +  k )  +  1 )  =  ( M  +  ( k  +  1 ) ) )
4241adantll 476 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( M  +  k )  +  1 )  =  ( M  +  ( k  +  1 ) ) )
4342oveq2d 5885 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
( ( M  +  k )  +  1 ) )  =  ( A ^ ( M  +  ( k  +  1 ) ) ) )
44 simpll 527 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  A  e.  CC )
45 nn0addcl 9200 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  +  k )  e.  NN0 )
4645adantll 476 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( M  +  k )  e.  NN0 )
47 expp1 10513 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( M  +  k
)  e.  NN0 )  ->  ( A ^ (
( M  +  k )  +  1 ) )  =  ( ( A ^ ( M  +  k ) )  x.  A ) )
4844, 46, 47syl2anc 411 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
( ( M  +  k )  +  1 ) )  =  ( ( A ^ ( M  +  k )
)  x.  A ) )
4943, 48eqtr3d 2212 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
( M  +  ( k  +  1 ) ) )  =  ( ( A ^ ( M  +  k )
)  x.  A ) )
50 expp1 10513 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
5150adantlr 477 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
( k  +  1 ) )  =  ( ( A ^ k
)  x.  A ) )
5251oveq2d 5885 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( A ^ M )  x.  ( A ^ (
k  +  1 ) ) )  =  ( ( A ^ M
)  x.  ( ( A ^ k )  x.  A ) ) )
5329adantr 276 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^ M )  e.  CC )
54 expcl 10524 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
5554adantlr 477 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
k )  e.  CC )
5653, 55, 44mulassd 7971 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( ( A ^ M )  x.  ( A ^
k ) )  x.  A )  =  ( ( A ^ M
)  x.  ( ( A ^ k )  x.  A ) ) )
5752, 56eqtr4d 2213 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( A ^ M )  x.  ( A ^ (
k  +  1 ) ) )  =  ( ( ( A ^ M )  x.  ( A ^ k ) )  x.  A ) )
5849, 57eqeq12d 2192 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( A ^ ( M  +  ( k  +  1 ) ) )  =  ( ( A ^ M )  x.  ( A ^ ( k  +  1 ) ) )  <-> 
( ( A ^
( M  +  k ) )  x.  A
)  =  ( ( ( A ^ M
)  x.  ( A ^ k ) )  x.  A ) ) )
5936, 58syl5ibr 156 . . . . . 6  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( A ^ ( M  +  k ) )  =  ( ( A ^ M )  x.  ( A ^ k ) )  ->  ( A ^
( M  +  ( k  +  1 ) ) )  =  ( ( A ^ M
)  x.  ( A ^ ( k  +  1 ) ) ) ) )
6059expcom 116 . . . . 5  |-  ( k  e.  NN0  ->  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( ( A ^
( M  +  k ) )  =  ( ( A ^ M
)  x.  ( A ^ k ) )  ->  ( A ^
( M  +  ( k  +  1 ) ) )  =  ( ( A ^ M
)  x.  ( A ^ ( k  +  1 ) ) ) ) ) )
6160a2d 26 . . . 4  |-  ( k  e.  NN0  ->  ( ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  +  k )
)  =  ( ( A ^ M )  x.  ( A ^
k ) ) )  ->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  +  ( k  +  1 ) ) )  =  ( ( A ^ M )  x.  ( A ^ ( k  +  1 ) ) ) ) ) )
626, 12, 18, 24, 35, 61nn0ind 9356 . . 3  |-  ( N  e.  NN0  ->  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ ( M  +  N )
)  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
6362expdcom 1442 . 2  |-  ( A  e.  CC  ->  ( M  e.  NN0  ->  ( N  e.  NN0  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) ) )
64633imp 1193 1  |-  ( ( A  e.  CC  /\  M  e.  NN0  /\  N  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148  (class class class)co 5869   CCcc 7800   0cc0 7802   1c1 7803    + caddc 7805    x. cmul 7807   NN0cn0 9165   ^cexp 10505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-seqfrec 10432  df-exp 10506
This theorem is referenced by:  expaddzaplem  10549  expaddzap  10550  expmul  10551  i4  10608  expaddd  10641  ef01bndlem  11748
  Copyright terms: Public domain W3C validator