Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > expadd | Unicode version |
Description: Sum of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by NM, 30-Nov-2004.) |
Ref | Expression |
---|---|
expadd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5850 | . . . . . . 7 | |
2 | 1 | oveq2d 5858 | . . . . . 6 |
3 | oveq2 5850 | . . . . . . 7 | |
4 | 3 | oveq2d 5858 | . . . . . 6 |
5 | 2, 4 | eqeq12d 2180 | . . . . 5 |
6 | 5 | imbi2d 229 | . . . 4 |
7 | oveq2 5850 | . . . . . . 7 | |
8 | 7 | oveq2d 5858 | . . . . . 6 |
9 | oveq2 5850 | . . . . . . 7 | |
10 | 9 | oveq2d 5858 | . . . . . 6 |
11 | 8, 10 | eqeq12d 2180 | . . . . 5 |
12 | 11 | imbi2d 229 | . . . 4 |
13 | oveq2 5850 | . . . . . . 7 | |
14 | 13 | oveq2d 5858 | . . . . . 6 |
15 | oveq2 5850 | . . . . . . 7 | |
16 | 15 | oveq2d 5858 | . . . . . 6 |
17 | 14, 16 | eqeq12d 2180 | . . . . 5 |
18 | 17 | imbi2d 229 | . . . 4 |
19 | oveq2 5850 | . . . . . . 7 | |
20 | 19 | oveq2d 5858 | . . . . . 6 |
21 | oveq2 5850 | . . . . . . 7 | |
22 | 21 | oveq2d 5858 | . . . . . 6 |
23 | 20, 22 | eqeq12d 2180 | . . . . 5 |
24 | 23 | imbi2d 229 | . . . 4 |
25 | nn0cn 9124 | . . . . . . . . 9 | |
26 | 25 | addid1d 8047 | . . . . . . . 8 |
27 | 26 | adantl 275 | . . . . . . 7 |
28 | 27 | oveq2d 5858 | . . . . . 6 |
29 | expcl 10473 | . . . . . . 7 | |
30 | 29 | mulid1d 7916 | . . . . . 6 |
31 | 28, 30 | eqtr4d 2201 | . . . . 5 |
32 | exp0 10459 | . . . . . . 7 | |
33 | 32 | adantr 274 | . . . . . 6 |
34 | 33 | oveq2d 5858 | . . . . 5 |
35 | 31, 34 | eqtr4d 2201 | . . . 4 |
36 | oveq1 5849 | . . . . . . 7 | |
37 | nn0cn 9124 | . . . . . . . . . . . 12 | |
38 | ax-1cn 7846 | . . . . . . . . . . . . 13 | |
39 | addass 7883 | . . . . . . . . . . . . 13 | |
40 | 38, 39 | mp3an3 1316 | . . . . . . . . . . . 12 |
41 | 25, 37, 40 | syl2an 287 | . . . . . . . . . . 11 |
42 | 41 | adantll 468 | . . . . . . . . . 10 |
43 | 42 | oveq2d 5858 | . . . . . . . . 9 |
44 | simpll 519 | . . . . . . . . . 10 | |
45 | nn0addcl 9149 | . . . . . . . . . . 11 | |
46 | 45 | adantll 468 | . . . . . . . . . 10 |
47 | expp1 10462 | . . . . . . . . . 10 | |
48 | 44, 46, 47 | syl2anc 409 | . . . . . . . . 9 |
49 | 43, 48 | eqtr3d 2200 | . . . . . . . 8 |
50 | expp1 10462 | . . . . . . . . . . 11 | |
51 | 50 | adantlr 469 | . . . . . . . . . 10 |
52 | 51 | oveq2d 5858 | . . . . . . . . 9 |
53 | 29 | adantr 274 | . . . . . . . . . 10 |
54 | expcl 10473 | . . . . . . . . . . 11 | |
55 | 54 | adantlr 469 | . . . . . . . . . 10 |
56 | 53, 55, 44 | mulassd 7922 | . . . . . . . . 9 |
57 | 52, 56 | eqtr4d 2201 | . . . . . . . 8 |
58 | 49, 57 | eqeq12d 2180 | . . . . . . 7 |
59 | 36, 58 | syl5ibr 155 | . . . . . 6 |
60 | 59 | expcom 115 | . . . . 5 |
61 | 60 | a2d 26 | . . . 4 |
62 | 6, 12, 18, 24, 35, 61 | nn0ind 9305 | . . 3 |
63 | 62 | expdcom 1430 | . 2 |
64 | 63 | 3imp 1183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 (class class class)co 5842 cc 7751 cc0 7753 c1 7754 caddc 7756 cmul 7758 cn0 9114 cexp 10454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-seqfrec 10381 df-exp 10455 |
This theorem is referenced by: expaddzaplem 10498 expaddzap 10499 expmul 10500 i4 10557 expaddd 10590 ef01bndlem 11697 |
Copyright terms: Public domain | W3C validator |