ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expadd Unicode version

Theorem expadd 10676
Description: Sum of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by NM, 30-Nov-2004.)
Assertion
Ref Expression
expadd  |-  ( ( A  e.  CC  /\  M  e.  NN0  /\  N  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) )

Proof of Theorem expadd
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5931 . . . . . . 7  |-  ( j  =  0  ->  ( M  +  j )  =  ( M  + 
0 ) )
21oveq2d 5939 . . . . . 6  |-  ( j  =  0  ->  ( A ^ ( M  +  j ) )  =  ( A ^ ( M  +  0 ) ) )
3 oveq2 5931 . . . . . . 7  |-  ( j  =  0  ->  ( A ^ j )  =  ( A ^ 0 ) )
43oveq2d 5939 . . . . . 6  |-  ( j  =  0  ->  (
( A ^ M
)  x.  ( A ^ j ) )  =  ( ( A ^ M )  x.  ( A ^ 0 ) ) )
52, 4eqeq12d 2211 . . . . 5  |-  ( j  =  0  ->  (
( A ^ ( M  +  j )
)  =  ( ( A ^ M )  x.  ( A ^
j ) )  <->  ( A ^ ( M  + 
0 ) )  =  ( ( A ^ M )  x.  ( A ^ 0 ) ) ) )
65imbi2d 230 . . . 4  |-  ( j  =  0  ->  (
( ( A  e.  CC  /\  M  e. 
NN0 )  ->  ( A ^ ( M  +  j ) )  =  ( ( A ^ M )  x.  ( A ^ j ) ) )  <->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  + 
0 ) )  =  ( ( A ^ M )  x.  ( A ^ 0 ) ) ) ) )
7 oveq2 5931 . . . . . . 7  |-  ( j  =  k  ->  ( M  +  j )  =  ( M  +  k ) )
87oveq2d 5939 . . . . . 6  |-  ( j  =  k  ->  ( A ^ ( M  +  j ) )  =  ( A ^ ( M  +  k )
) )
9 oveq2 5931 . . . . . . 7  |-  ( j  =  k  ->  ( A ^ j )  =  ( A ^ k
) )
109oveq2d 5939 . . . . . 6  |-  ( j  =  k  ->  (
( A ^ M
)  x.  ( A ^ j ) )  =  ( ( A ^ M )  x.  ( A ^ k
) ) )
118, 10eqeq12d 2211 . . . . 5  |-  ( j  =  k  ->  (
( A ^ ( M  +  j )
)  =  ( ( A ^ M )  x.  ( A ^
j ) )  <->  ( A ^ ( M  +  k ) )  =  ( ( A ^ M )  x.  ( A ^ k ) ) ) )
1211imbi2d 230 . . . 4  |-  ( j  =  k  ->  (
( ( A  e.  CC  /\  M  e. 
NN0 )  ->  ( A ^ ( M  +  j ) )  =  ( ( A ^ M )  x.  ( A ^ j ) ) )  <->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  +  k ) )  =  ( ( A ^ M )  x.  ( A ^ k ) ) ) ) )
13 oveq2 5931 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  ( M  +  j )  =  ( M  +  ( k  +  1 ) ) )
1413oveq2d 5939 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  ( A ^ ( M  +  j ) )  =  ( A ^ ( M  +  ( k  +  1 ) ) ) )
15 oveq2 5931 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  ( A ^ j )  =  ( A ^ (
k  +  1 ) ) )
1615oveq2d 5939 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( A ^ M
)  x.  ( A ^ j ) )  =  ( ( A ^ M )  x.  ( A ^ (
k  +  1 ) ) ) )
1714, 16eqeq12d 2211 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( A ^ ( M  +  j )
)  =  ( ( A ^ M )  x.  ( A ^
j ) )  <->  ( A ^ ( M  +  ( k  +  1 ) ) )  =  ( ( A ^ M )  x.  ( A ^ ( k  +  1 ) ) ) ) )
1817imbi2d 230 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( ( A  e.  CC  /\  M  e. 
NN0 )  ->  ( A ^ ( M  +  j ) )  =  ( ( A ^ M )  x.  ( A ^ j ) ) )  <->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  +  ( k  +  1 ) ) )  =  ( ( A ^ M )  x.  ( A ^ ( k  +  1 ) ) ) ) ) )
19 oveq2 5931 . . . . . . 7  |-  ( j  =  N  ->  ( M  +  j )  =  ( M  +  N ) )
2019oveq2d 5939 . . . . . 6  |-  ( j  =  N  ->  ( A ^ ( M  +  j ) )  =  ( A ^ ( M  +  N )
) )
21 oveq2 5931 . . . . . . 7  |-  ( j  =  N  ->  ( A ^ j )  =  ( A ^ N
) )
2221oveq2d 5939 . . . . . 6  |-  ( j  =  N  ->  (
( A ^ M
)  x.  ( A ^ j ) )  =  ( ( A ^ M )  x.  ( A ^ N
) ) )
2320, 22eqeq12d 2211 . . . . 5  |-  ( j  =  N  ->  (
( A ^ ( M  +  j )
)  =  ( ( A ^ M )  x.  ( A ^
j ) )  <->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
2423imbi2d 230 . . . 4  |-  ( j  =  N  ->  (
( ( A  e.  CC  /\  M  e. 
NN0 )  ->  ( A ^ ( M  +  j ) )  =  ( ( A ^ M )  x.  ( A ^ j ) ) )  <->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) ) )
25 nn0cn 9262 . . . . . . . . 9  |-  ( M  e.  NN0  ->  M  e.  CC )
2625addridd 8178 . . . . . . . 8  |-  ( M  e.  NN0  ->  ( M  +  0 )  =  M )
2726adantl 277 . . . . . . 7  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( M  +  0 )  =  M )
2827oveq2d 5939 . . . . . 6  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ ( M  +  0 ) )  =  ( A ^ M ) )
29 expcl 10652 . . . . . . 7  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ M
)  e.  CC )
3029mulridd 8046 . . . . . 6  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( ( A ^ M )  x.  1 )  =  ( A ^ M ) )
3128, 30eqtr4d 2232 . . . . 5  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ ( M  +  0 ) )  =  ( ( A ^ M )  x.  1 ) )
32 exp0 10638 . . . . . . 7  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
3332adantr 276 . . . . . 6  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ 0 )  =  1 )
3433oveq2d 5939 . . . . 5  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( ( A ^ M )  x.  ( A ^ 0 ) )  =  ( ( A ^ M )  x.  1 ) )
3531, 34eqtr4d 2232 . . . 4  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ ( M  +  0 ) )  =  ( ( A ^ M )  x.  ( A ^
0 ) ) )
36 oveq1 5930 . . . . . . 7  |-  ( ( A ^ ( M  +  k ) )  =  ( ( A ^ M )  x.  ( A ^ k
) )  ->  (
( A ^ ( M  +  k )
)  x.  A )  =  ( ( ( A ^ M )  x.  ( A ^
k ) )  x.  A ) )
37 nn0cn 9262 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  k  e.  CC )
38 ax-1cn 7975 . . . . . . . . . . . . 13  |-  1  e.  CC
39 addass 8012 . . . . . . . . . . . . 13  |-  ( ( M  e.  CC  /\  k  e.  CC  /\  1  e.  CC )  ->  (
( M  +  k )  +  1 )  =  ( M  +  ( k  +  1 ) ) )
4038, 39mp3an3 1337 . . . . . . . . . . . 12  |-  ( ( M  e.  CC  /\  k  e.  CC )  ->  ( ( M  +  k )  +  1 )  =  ( M  +  ( k  +  1 ) ) )
4125, 37, 40syl2an 289 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ( M  +  k )  +  1 )  =  ( M  +  ( k  +  1 ) ) )
4241adantll 476 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( M  +  k )  +  1 )  =  ( M  +  ( k  +  1 ) ) )
4342oveq2d 5939 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
( ( M  +  k )  +  1 ) )  =  ( A ^ ( M  +  ( k  +  1 ) ) ) )
44 simpll 527 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  A  e.  CC )
45 nn0addcl 9287 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  +  k )  e.  NN0 )
4645adantll 476 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( M  +  k )  e.  NN0 )
47 expp1 10641 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( M  +  k
)  e.  NN0 )  ->  ( A ^ (
( M  +  k )  +  1 ) )  =  ( ( A ^ ( M  +  k ) )  x.  A ) )
4844, 46, 47syl2anc 411 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
( ( M  +  k )  +  1 ) )  =  ( ( A ^ ( M  +  k )
)  x.  A ) )
4943, 48eqtr3d 2231 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
( M  +  ( k  +  1 ) ) )  =  ( ( A ^ ( M  +  k )
)  x.  A ) )
50 expp1 10641 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
5150adantlr 477 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
( k  +  1 ) )  =  ( ( A ^ k
)  x.  A ) )
5251oveq2d 5939 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( A ^ M )  x.  ( A ^ (
k  +  1 ) ) )  =  ( ( A ^ M
)  x.  ( ( A ^ k )  x.  A ) ) )
5329adantr 276 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^ M )  e.  CC )
54 expcl 10652 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
5554adantlr 477 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
k )  e.  CC )
5653, 55, 44mulassd 8053 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( ( A ^ M )  x.  ( A ^
k ) )  x.  A )  =  ( ( A ^ M
)  x.  ( ( A ^ k )  x.  A ) ) )
5752, 56eqtr4d 2232 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( A ^ M )  x.  ( A ^ (
k  +  1 ) ) )  =  ( ( ( A ^ M )  x.  ( A ^ k ) )  x.  A ) )
5849, 57eqeq12d 2211 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( A ^ ( M  +  ( k  +  1 ) ) )  =  ( ( A ^ M )  x.  ( A ^ ( k  +  1 ) ) )  <-> 
( ( A ^
( M  +  k ) )  x.  A
)  =  ( ( ( A ^ M
)  x.  ( A ^ k ) )  x.  A ) ) )
5936, 58imbitrrid 156 . . . . . 6  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( A ^ ( M  +  k ) )  =  ( ( A ^ M )  x.  ( A ^ k ) )  ->  ( A ^
( M  +  ( k  +  1 ) ) )  =  ( ( A ^ M
)  x.  ( A ^ ( k  +  1 ) ) ) ) )
6059expcom 116 . . . . 5  |-  ( k  e.  NN0  ->  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( ( A ^
( M  +  k ) )  =  ( ( A ^ M
)  x.  ( A ^ k ) )  ->  ( A ^
( M  +  ( k  +  1 ) ) )  =  ( ( A ^ M
)  x.  ( A ^ ( k  +  1 ) ) ) ) ) )
6160a2d 26 . . . 4  |-  ( k  e.  NN0  ->  ( ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  +  k )
)  =  ( ( A ^ M )  x.  ( A ^
k ) ) )  ->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  +  ( k  +  1 ) ) )  =  ( ( A ^ M )  x.  ( A ^ ( k  +  1 ) ) ) ) ) )
626, 12, 18, 24, 35, 61nn0ind 9443 . . 3  |-  ( N  e.  NN0  ->  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ ( M  +  N )
)  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
6362expdcom 1453 . 2  |-  ( A  e.  CC  ->  ( M  e.  NN0  ->  ( N  e.  NN0  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) ) )
64633imp 1195 1  |-  ( ( A  e.  CC  /\  M  e.  NN0  /\  N  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167  (class class class)co 5923   CCcc 7880   0cc0 7882   1c1 7883    + caddc 7885    x. cmul 7887   NN0cn0 9252   ^cexp 10633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7973  ax-resscn 7974  ax-1cn 7975  ax-1re 7976  ax-icn 7977  ax-addcl 7978  ax-addrcl 7979  ax-mulcl 7980  ax-mulrcl 7981  ax-addcom 7982  ax-mulcom 7983  ax-addass 7984  ax-mulass 7985  ax-distr 7986  ax-i2m1 7987  ax-0lt1 7988  ax-1rid 7989  ax-0id 7990  ax-rnegex 7991  ax-precex 7992  ax-cnre 7993  ax-pre-ltirr 7994  ax-pre-ltwlin 7995  ax-pre-lttrn 7996  ax-pre-apti 7997  ax-pre-ltadd 7998  ax-pre-mulgt0 7999  ax-pre-mulext 8000
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6200  df-2nd 6201  df-recs 6365  df-frec 6451  df-pnf 8066  df-mnf 8067  df-xr 8068  df-ltxr 8069  df-le 8070  df-sub 8202  df-neg 8203  df-reap 8605  df-ap 8612  df-div 8703  df-inn 8994  df-n0 9253  df-z 9330  df-uz 9605  df-seqfrec 10543  df-exp 10634
This theorem is referenced by:  expaddzaplem  10677  expaddzap  10678  expmul  10679  i4  10737  expaddd  10770  ef01bndlem  11924  modxai  12596  numexp2x  12605  2exp5  12612  2exp11  12616
  Copyright terms: Public domain W3C validator